Extra‐Binomial Variation in Logistic Linear Models

作者: D. A. Williams

DOI: 10.2307/2347977

关键词:

摘要: SUMMARY The logistic-linear model, and its maximum likelihood estimation by iterated reweighted least squares, can be simply modified to incorporate a component of extra-binomial variation. modifications are very easily effected if the GLIM program is used.

参考文章(11)
Martin J. Crowder, Beta-binomial Anova for Proportions Journal of The Royal Statistical Society Series C-applied Statistics. ,vol. 27, pp. 34- 37 ,(1978) , 10.2307/2346223
Peter McCullagh, John Ashworth Nelder, Generalized Linear Models ,(1983)
L. L. Kupper, J. K. Haseman, The Use of a Correlated Binomial Model for the Analysis of Certain Toxicological Experiments Biometrics. ,vol. 34, pp. 69- 76 ,(1978) , 10.2307/2529589
J. K. Haseman, L. L. Kupper, Analysis of Dichotomous Response Data from Certain Toxicological Experiments Biometrics. ,vol. 35, pp. 281- ,(1979) , 10.2307/2529950
D. Collett, R. J. Baker, J. A. Nelder, The GLIM System Release 3. Biometrics. ,vol. 35, pp. 527- ,(1979) , 10.2307/2530359
J. ATCHISON, S.M. SHEN, Logistic-normal distributions:Some properties and uses Biometrika. ,vol. 67, pp. 261- 272 ,(1980) , 10.1093/BIOMET/67.2.261
Patricia M. E. Altham, Two Generalizations of the Binomial Distribution Applied Statistics. ,vol. 27, pp. 162- 167 ,(1978) , 10.2307/2346943
J. A. Lewis, D. Finney, Probit Analysis (3rd ed). Applied statistics. ,vol. 21, pp. 210- ,(1972) , 10.2307/2346498