Implications of scaling for the proton-neutron mass difference

作者: J. Gasser , H. Leutwyler

DOI: 10.1016/0550-3213(75)90493-9

关键词:

摘要: Abstract We assume that the structure functions V1, V2 scale and do not contain fixed poles at integer values of α = 0, 1, 2, …. This leads to a logarithmically divergent self-energy. include tadpole term in Lagrangian. The part self-energy is absorbed renormalization coupling constant. Using available data we then carefully evaluate low- high-energy contributions electromagnetic mass shift nucleons. conclusions agree with model Coleman Glashow. In quark-model language our result corresponds mu ≅ 4 MeV, md 6 MeV ms 135 for masses up, down strange quarks, respectively.

参考文章(17)
Moshe Elitzur, Haim Harari, Electromagnetic mass differences and inelastic electron scattering Annals of Physics. ,vol. 56, pp. 81- 107 ,(1970) , 10.1016/0003-4916(70)90006-0
S. L. Glashow, Steven Weinberg, Breaking Chiral Symmetry Physical Review Letters. ,vol. 20, pp. 224- 227 ,(1968) , 10.1103/PHYSREVLETT.20.224
Steven Weinberg, Electromagnetic and weak masses Physical Review Letters. ,vol. 29, pp. 388- 392 ,(1972) , 10.1103/PHYSREVLETT.29.388
T. P. Cheng, Roger Dashen, IS SU(2) x SU(2) A BETTER SYMMETRY THAN SU(3). Physical Review Letters. ,vol. 26, pp. 594- 597 ,(1971) , 10.1103/PHYSREVLETT.26.594
Rabindra N. Mohapatra, Patrizio Vinciarelli, Effective Weak-Interaction Cutoff of Electromagnetic Radiative Corrections in Unified Gauge Theories Physical Review Letters. ,vol. 30, pp. 804- 807 ,(1973) , 10.1103/PHYSREVLETT.30.804
Kenneth G. Wilson, Non-Lagrangian Models of Current Algebra Physical Review. ,vol. 179, pp. 1499- 1512 ,(1969) , 10.1103/PHYSREV.179.1499
G.'t Hooft, Renormalizable Lagrangians for Massive Yang-Mills Fields Nuclear Physics. ,vol. 35, pp. 167- 188 ,(1971) , 10.1016/0550-3213(71)90139-8
David G. Boulware, S. Deser, Equal-Time Commutators and Electromagnetic Mass Splittings Physical Review. ,vol. 175, pp. 1912- 1933 ,(1968) , 10.1103/PHYSREV.175.1912