Higher derivative quantum gravity on a simplicial lattice

作者: Herbert W. Hamber , Ruth M. Williams

DOI: 10.1016/0550-3213(84)90603-5

关键词:

摘要: Abstract We generalize the action of Regge calculus to include equivalent both a cosmological constant term and higher derivative involving integral R 2 . compare our expression for these terms with continuum values regular tessellations 2-, 3- 4-dimensional spheres, describe how formalism may be applied calculations in quantum gravity.

参考文章(34)
Stephen W. Hawking, W. Israel, General Relativity; an Einstein Centenary Survey ,(1979)
Konrad Osterwalder, Robert Schrader, Axioms for Euclidean Green's functions. II [with an Appendix by Stephen Summers] Communications in Mathematical Physics. ,vol. 42, pp. 281- 305 ,(1975)
Jeff Cheeger, Spectral geometry of singular Riemannian spaces Journal of Differential Geometry. ,vol. 18, pp. 575- 657 ,(1983) , 10.4310/JDG/1214438175
M Roček, Ruth M Williams, None, Quantum Regge calculus Physics Letters B. ,vol. 104, pp. 31- 37 ,(1981) , 10.1016/0370-2693(81)90848-0
Ryoyu Utiyama, Bryce S. DeWitt, Renormalization of a Classical Gravitational Field Interacting with Quantized Matter Fields Journal of Mathematical Physics. ,vol. 3, pp. 608- 618 ,(1962) , 10.1063/1.1724264
B. Hasslacher, E. Mottola, Asymptotically free quantum gravity and black holes Physics Letters B. ,vol. 99, pp. 221- 224 ,(1981) , 10.1016/0370-2693(81)91112-6
Remo J Ruffini, Hans C Ohanian, Gravitation and Spacetime ,(1976)
E. T. Tomboulis, Unitarity in Higher-Derivative Quantum Gravity Physical Review Letters. ,vol. 52, pp. 1173- 1176 ,(1984) , 10.1103/PHYSREVLETT.52.1173
E. Tomboulis, Renormalizability and asymptotic freedom in quantum gravity Physics Letters B. ,vol. 97, pp. 77- 80 ,(1980) , 10.1016/0370-2693(80)90550-X
G. Feinberg, R. Friedberg, T.D. Lee, H.C. Ren, Lattice gravity near the continuum limit Nuclear Physics. ,vol. 245, pp. 343- 368 ,(1984) , 10.1016/0550-3213(84)90436-X