A rational approximation of the Dawsons integral for efficient computation of the complex error function

作者: Sanjar M. Abrarov , Brendan M. Quine

DOI: 10.1016/J.AMC.2017.10.032

关键词:

摘要: In this work we show a rational approximation of the Dawsons integral that can be implemented for high accuracy computation complex error function in rapid algorithm. Specifically, approach provides exceeding 1014 domain practical importance 0y<0.1|x+iy|8. A Matlab code with entire coverage plane is presented.

参考文章(53)
Mois Ilia Aroyo, H Wondratschek, International tables for crystallography Kluwer. ,(2002)
David Emerson, Interpreting astronomical spectra ,(1996)
Baxter H. Armstrong, Ralph W. Nicholls, Emission, absorption, and transfer of radiation in heated atmospheres ,(1972)
B. M. Quine, S. M. Abrarov, A rational approximation for the Dawson's integral of real argument arXiv: Numerical Analysis. ,(2015)
Walter Gautschi, Efficient computation of the complex error function SIAM Journal on Numerical Analysis. ,vol. 7, pp. 187- 198 ,(1970) , 10.1137/0707012
Andrew Eckford, Nariman Farsad, Weisi Guo, Chan-Byoung Chae, Stable Distributions as Noise Models for Molecular Communication arXiv: Information Theory. ,(2015)
Till Moritz Karbach, Gerhard Raven, Manuel Schiller, Decay time integrals in neutral meson mixing and their efficient evaluation arXiv: Data Analysis, Statistics and Probability. ,(2014)
G. P. M. Poppe, C. M. J. Wijers, Algorithm 680: evaluation of the complex error function ACM Transactions on Mathematical Software. ,vol. 16, pp. 47- 47 ,(1990) , 10.1145/77626.77630
F. Schreier, The Voigt and complex error function: A comparison of computational methods Journal of Quantitative Spectroscopy and Radiative Transfer. ,vol. 48, pp. 743- 762 ,(1992) , 10.1016/0022-4073(92)90139-U