Queensland load profiling by using clustering techniques

作者: Daven Colley , Nadali Mahmoudi , Daniel Eghbal , Tapan K. Saha

DOI: 10.1109/AUPEC.2014.6966554

关键词:

摘要: Load profiling is essential in power systems operation and planning. Accurate load profiles lead to a better scheduling as well price forecasting. Clustering techniques are used provide an enhanced knowledge on electrical patterns. This paper deals with clustering methods analyze Queensland's data. The K-means method here, where its accuracy measured using the dispersion indicator (CDI). applied Queensland curves 2013, distinct monthly yearly obtained. In addition, characteristic of each profile depending day type weather conditions analyzed.

参考文章(10)
N. Mahmoudi-Kohan, M. Parsa Moghaddam, M.K. Sheikh-El-Eslami, An annual framework for clustering-based pricing for an electricity retailer Electric Power Systems Research. ,vol. 80, pp. 1042- 1048 ,(2010) , 10.1016/J.EPSR.2010.01.010
G.J. Tsekouras, P.B. Kotoulas, C.D. Tsirekis, E.N. Dialynas, N.D. Hatziargyriou, A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers Electric Power Systems Research. ,vol. 78, pp. 1494- 1510 ,(2008) , 10.1016/J.EPSR.2008.01.010
Triantafyllia G. Nikolaou, Dionysia S. Kolokotsa, George S. Stavrakakis, Ioannis D. Skias, On the Application of Clustering Techniques for Office Buildings' Energy and Thermal Comfort Classification IEEE Transactions on Smart Grid. ,vol. 3, pp. 2196- 2210 ,(2012) , 10.1109/TSG.2012.2215059
Tiefeng Zhang, Guangquan Zhang, Jie Lu, Xiaopu Feng, Wanchun Yang, A New Index and Classification Approach for Load Pattern Analysis of Large Electricity Customers IEEE Transactions on Power Systems. ,vol. 27, pp. 153- 160 ,(2012) , 10.1109/TPWRS.2011.2167524
Sergio Ramos, Zita Vale, Data mining techniques application in power distribution utilities ieee/pes transmission and distribution conference and exposition. pp. 1- 8 ,(2008) , 10.1109/TDC.2008.4517229
G. Chicco, R. Napoli, F. Piglione, Comparisons among clustering techniques for electricity customer classification IEEE Transactions on Power Systems. ,vol. 21, pp. 933- 940 ,(2006) , 10.1109/TPWRS.2006.873122
Wenyuan Li, Jiaqi Zhou, Xiaofu Xiong, Jiping Lu, A Statistic-Fuzzy Technique for Clustering Load Curves IEEE Transactions on Power Systems. ,vol. 22, pp. 890- 891 ,(2007) , 10.1109/TPWRS.2007.894851
H. Salazar, R. Gallego, R. Romero, Artificial neural networks and clustering techniques applied in the reconfiguration of distribution systems IEEE Transactions on Power Delivery. ,vol. 21, pp. 1735- 1742 ,(2006) , 10.1109/TPWRD.2006.875854
N Mahmoudi-Kohan, M Parsa Moghaddam, MK Sheikh-El-Eslami, SM Bidoki, Improving WFA k-means technique for demand response programs applications power and energy society general meeting. pp. 1- 5 ,(2009) , 10.1109/PES.2009.5275413