Deep learning-based prediction of kinetic parameters from myocardial perfusion MRI

作者: Mitko Veta , Amedeo Chiribiri , Marcel Breeuwer , Cian M. Scannell , Piet van den Bosch

DOI:

关键词:

摘要: The quantification of myocardial perfusion MRI has the potential to provide a fast, automated and user-independent assessment ischaemia. However, due relatively high noise level low temporal resolution acquired data complexity tracer-kinetic models, model fitting can yield unreliable parameter estimates. A solution this problem is use Bayesian inference which incorporate prior knowledge improve reliability estimation. This, however, uses Markov chain Monte Carlo sampling approximate posterior distribution kinetic parameters extremely time intensive. This work proposes training convolutional networks directly predict from signal-intensity curves that are trained using estimates obtained inference. allows fast estimation with similar performance

参考文章(5)
Nikolaos Dikaios, David Atkinson, Chiara Tudisca, Pierpaolo Purpura, Martin Forster, Hashim Ahmed, Timothy Beale, Mark Emberton, Shonit Punwani, A comparison of Bayesian and non-linear regression methods for robust estimation of pharmacokinetics in DCE-MRI and how it affects cancer diagnosis. Computerized Medical Imaging and Graphics. ,vol. 56, pp. 1- 10 ,(2017) , 10.1016/J.COMPMEDIMAG.2017.01.003
King Chung Ho, Fabien Scalzo, Karthik V. Sarma, Suzie El-Saden, Corey W. Arnold, A temporal deep learning approach for MR perfusion parameter estimation in stroke international conference on pattern recognition. pp. 1315- 1320 ,(2016) , 10.1109/ICPR.2016.7899819
Eva C. Sammut, Adriana D.M. Villa, Gabriella Di Giovine, Luke Dancy, Filippo Bosio, Thomas Gibbs, Swarna Jeyabraba, Susanne Schwenke, Steven E. Williams, Michael Marber, Khaled Alfakih, Tevfik F. Ismail, Reza Razavi, Amedeo Chiribiri, Prognostic Value of Quantitative Stress Perfusion Cardiac Magnetic Resonance Jacc-cardiovascular Imaging. ,vol. 11, pp. 686- 694 ,(2017) , 10.1016/J.JCMG.2017.07.022
Cian M. Scannell, Adriana D. M. Villa, Jack Lee, Marcel Breeuwer, Amedeo Chiribiri, Robust Non-Rigid Motion Compensation of Free-Breathing Myocardial Perfusion MRI Data IEEE Transactions on Medical Imaging. ,vol. 38, pp. 1812- 1820 ,(2019) , 10.1109/TMI.2019.2897044
Cian M. Scannell, Amedeo Chiribiri, Adriana D.M. Villa, Marcel Breeuwer, Jack Lee, Hierarchical Bayesian myocardial perfusion quantification. Medical Image Analysis. ,vol. 60, pp. 101611- ,(2020) , 10.1016/J.MEDIA.2019.101611