The curvature: a variational approach

作者: Luca Rizzi , Andrei Agrachev , Davide Barilari

DOI:

关键词:

摘要: The curvature discussed in this paper is a far reaching generalisation of the Riemannian sectional curvature. We give unified definition which applies to wide class geometric structures whose geodesics arise from optimal control problems, including Riemannian, subRiemannian, Finsler and sub-Finsler spaces. Special attention paid sub-Riemannian (or Carnot–Caratheodory) metric Our construction direct naive, similar original approach Riemann. In particular, we extract invariants asymptotics cost problems. Surprisingly, it works very general setting and, for all

参考文章(39)
Ugo Boscain, Andrei A. Agrachev, Davide Barilari, Introduction to Riemannian and Sub-Riemannian geometry SISSA. ,(2012)
Thomas Gallouët, Transport optimal : régularité et applications Lyon, École normale supérieure. ,(2012)
Hubert L. Goldschmidt, Robert L. Bryant, P. A. Griffiths, Robert B. Gardner, S. S. Chern, Exterior Differential Systems ,(2011)
Andrei A. Agrachev, Geometry of Optimal Control Problems and Hamiltonian Systems Lecture Notes in Mathematics. ,vol. 1932, pp. 1- 59 ,(2008) , 10.1007/978-3-540-77653-6_1
Robert S. Strichartz, Sub-Riemannian geometry Journal of Differential Geometry. ,vol. 24, pp. 221- 263 ,(1986) , 10.4310/JDG/1214440436
L. Rifford, E. Tr�lat, Morse-Sard type results in sub-Riemannian geometry Mathematische Annalen. ,vol. 332, pp. 145- 159 ,(2005) , 10.1007/S00208-004-0622-2
Yuri L. Sachkov, Andrei A. Agrachev, Control Theory from the Geometric Viewpoint ,(2004)
Jean-Michel Coron, Control and Nonlinearity ,(2009)