A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization

作者: X. Blasco , J.M. Herrero , J. Sanchis , M. Martínez

DOI: 10.1016/J.INS.2008.06.010

关键词:

摘要: New challenges in engineering design lead to multiobjective (multicriteria) problems. In this context, the Pareto front supplies a set of solutions where designer (decision-maker) has look for best choice according his preferences. Visualization techniques often play key role helping decision-makers, but they have important restrictions more than two-dimensional fronts. work, new graphical representation, called Level Diagrams, n-dimensional analysis is proposed. Diagrams consists representing each objective and parameter on separate diagrams. This technique based two points: classification points their proximity ideal measured with specific norm normalized objectives (several norms can be used); synchronization Some possibilities analyzing fronts are shown. Additionally, order introduce preferences, coloured, so establishing visual representation preferences that help decision-maker. Finally, an example robust control presented - benchmark proposed at American Control Conference. as six-dimensional problem.

参考文章(29)
J. M. Herrero, M. Martínez, J. Sanchis, X. Blasco, Well-Distributed Pareto Front by Using the $\epsilon \hskip-0.9em \nearrow \hskip-0.4em-MOGA$ Evolutionary Algorithm Computational and Ambient Intelligence. pp. 292- 299 ,(2007) , 10.1007/978-3-540-73007-1_36
Achille Messac, Christopher A. Mattson, Generating Well-Distributed Sets of Pareto Points for Engineering Design Using Physical Programming Optimization and Engineering. ,vol. 3, pp. 431- 450 ,(2002) , 10.1023/A:1021179727569
X. Blasco, J.M. Herrero, J. Sanchis, M. Martínez, Identificación robusta de un Proceso Biomédico mediante Algoritmos Evolutivos Revista Iberoamericana De Automatica E Informatica Industrial. ,vol. 3, pp. 75- 86 ,(2009)
L. Rachmawati, D. Srinivasan, Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey ieee international conference on evolutionary computation. pp. 962- 968 ,(2006) , 10.1109/CEC.2006.1688414
X. Blasco, J. M. Herrero, J. Sanchis, M. Martínez, Decision Making Graphical Tool for Multiobjective Optimization Problems Bio-inspired Modeling of Cognitive Tasks. pp. 568- 577 ,(2007) , 10.1007/978-3-540-73053-8_57
Andy Pryke, Sanaz Mostaghim, Alireza Nazemi, Heatmap Visualization of Population Based Multi Objective Algorithms Lecture Notes in Computer Science. pp. 361- 375 ,(2007) , 10.1007/978-3-540-70928-2_29
X. Blasco, M. Martínez, J. M. Herrero, J. Sanchis, Well-distributed Pareto front by using the ∉-MOGA evolutionary algorithm international work-conference on artificial and natural neural networks. pp. 292- 299 ,(2007)
J. Renaud, J. Thibault, R. Lanouette, L.N. Kiss, K. Zaras, C. Fonteix, Comparison of two multicriteria decision aid methods: Net Flow and Rough Set Methods in a high yield pulping process European Journal of Operational Research. ,vol. 177, pp. 1418- 1432 ,(2007) , 10.1016/J.EJOR.2005.04.013
Lily Rachmawati, Dipti Srinivasan, A multi-objective evolutionary algorithm with weighted-sum niching for convergence on knee regions Proceedings of the 8th annual conference on Genetic and evolutionary computation - GECCO '06. pp. 749- 750 ,(2006) , 10.1145/1143997.1144130