A Two-Stage System for Arabic Handwritten Digit Recognition Tested on a New Large Database.

作者: Sherif Abdelazeem , Ezzat Ali El-Sherif

DOI:

关键词:

摘要: In this paper, we introduce a new large Arabic Handwritten Digits dataBase (AHDBase). The AHDBase is composed of 60,000 digits for training and 10,000 testing written by 700 persons different ages educational backgrounds. We also recognition system handwritten with rate 99.15 % low time. Our two stages. first stage an Artificial Neural Network (ANN) fed short powerful feature vector fast classification non-ambiguous cases. First has reject option to pass the ambiguous cases more second stage. Second slow yet Support Vector Machine (SVM) classify rejected from

参考文章(11)
Hasan Soltanzadeh, Mohammad Rahmati, Recognition of Persian handwritten digits using image profiles of multiple orientations Pattern Recognition Letters. ,vol. 25, pp. 1569- 1576 ,(2004) , 10.1016/J.PATREC.2004.05.014
Faruq A. Al-Omari, Omar Al-Jarrah, Handwritten Indian numerals recognition system using probabilistic neural networks Advanced Engineering Informatics. ,vol. 18, pp. 9- 16 ,(2004) , 10.1016/J.AEI.2004.02.001
F.N. Said, A. Yacoub, C.Y. Suen, Recognition of English and Arabic numerals using a dynamic number of hidden neurons international conference on document analysis and recognition. pp. 237- 240 ,(1999) , 10.1109/ICDAR.1999.791768
Øivind Due Trier, Anil K. Jain, Torfinn Taxt, FEATURE EXTRACTION METHODS FOR CHARACTER RECOGNITION--A SURVEY Pattern Recognition. ,vol. 29, pp. 641- 662 ,(1996) , 10.1016/0031-3203(95)00118-2
M. Hanmandlu, K.R. Murali Mohan, H. Kumar, Neural based handwritten character recognition international conference on document analysis and recognition. pp. 241- 244 ,(1999) , 10.1109/ICDAR.1999.791769
Dengsheng Zhang, Guojun Lu, Review of shape representation and description techniques Pattern Recognition. ,vol. 37, pp. 1- 19 ,(2004) , 10.1016/J.PATCOG.2003.07.008
S. Mozaffari, K. Faez, M. Ziaratban, Structural decomposition and statistical description of Farsi/Arabic handwritten numeric characters international conference on document analysis and recognition. pp. 237- 241 ,(2005) , 10.1109/ICDAR.2005.221
Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition Proceedings of the IEEE. ,vol. 86, pp. 2278- 2324 ,(1998) , 10.1109/5.726791
S. Behnke, M. Pfister, R. Rojas, Recognition of handwritten digits using structural information Proceedings of International Conference on Neural Networks (ICNN'97). ,vol. 3, pp. 1391- 1396 ,(1997) , 10.1109/ICNN.1997.613997