ACO-Based bayesian network ensembles for the hierarchical classification of ageing-related proteins

作者: Khalid M. Salama , Alex A. Freitas

DOI: 10.1007/978-3-642-37189-9_8

关键词:

摘要: The task of predicting protein functions using computational techniques is a major research area in the field bioinformatics. Casting into classification problem makes it challenging, since classes (functions) to be predicted are hierarchically related, and can have more than one function. One approach produce set local classifiers; each responsible for discriminating between subset certain level hierarchy. In this paper we tackle hierarchical fashion, by learning an ensemble Bayesian network classifiers class hierarchy combining their outputs with four alternative methods: a) selecting best classifier, b) majority voting, c) weighted d) constructing meta-classifier. built ABC-Miner, our recently introduced Ant-based Classification algorithm. We use different types representations learn models. empirically evaluate proposed methods on ageing-related dataset created research.

参考文章(28)
Andrew D. Secker, Matthew N. Davies, Alex A. Freitas, Jon Timmis, Darren R. Flower, Miguel Mendao, An experimental comparison of classification algorithms for hierarchical prediction of protein function ,(2007)
Khalid M. Salama, Alex A. Freitas, ABC-miner: an ant-based bayesian classification algorithm international conference on swarm intelligence. pp. 13- 24 ,(2012) , 10.1007/978-3-642-32650-9_2
Liangxiao Jiang, Dianhong Wang, Zhihua Cai, Xuesong Yan, Survey of Improving Naive Bayes for Classification advanced data mining and applications. pp. 134- 145 ,(2007) , 10.1007/978-3-540-73871-8_14
Eduardo P. Costa, Ana C. Lorena, André C. P. L. F. Carvalho, Alex A. Freitas, Top-Down Hierarchical Ensembles of Classifiers for Predicting G-Protein-Coupled-Receptor Functions brazilian symposium on bioinformatics. pp. 35- 46 ,(2008) , 10.1007/978-3-540-85557-6_4
Jie Cheng, Russell Greiner, Learning Bayesian Belief Network Classifiers: Algorithms and System Advances in Artificial Intelligence. pp. 141- 151 ,(2001) , 10.1007/3-540-45153-6_14
Mark A. Hall, Ian H. Witten, Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques ,(1999)
M. Birattari, T. Stutzle, M. Dorigo, Ant Colony Optimization ,(2004)
Carlos N. Silla, Alex A. Freitas, Selecting different protein representations and classification algorithms in hierarchical protein function prediction intelligent data analysis. ,vol. 15, pp. 979- 999 ,(2011) , 10.3233/IDA-2011-0505
A. Secker, M.N. Davies, A.A. Freitas, E.B. Clark, J. Timmis, D.R. Flower, Hierarchical classification of G-Protein-Coupled Receptors with data-driven selection of attributes and classifiers data mining in bioinformatics. ,vol. 4, pp. 191- 210 ,(2010) , 10.1504/IJDMB.2010.032150
Yanghui Wu, John McCall, David Corne, Two novel Ant Colony Optimization approaches for Bayesian network structure learning IEEE Congress on Evolutionary Computation. pp. 1- 7 ,(2010) , 10.1109/CEC.2010.5586528