A data-driven Koopman model predictive control framework for nonlinear flows

作者: Igor Mezic , Milan Korda , Hassan Arbabi

DOI:

关键词:

摘要: The Koopman operator theory is an increasingly popular formalism of dynamical systems which enables analysis and prediction the nonlinear dynamics from measurement data. Building on recent development model predictive control framework (Korda Mezic 2016), we propose a methodology for closed-loop feedback flows in fully data-driven model-free manner. In first step, compute Koopman-linear representation system using variation extended dynamic mode decomposition algorithm then apply to constructed linear model. Our handles both full-state sparse measurement; latter case, it incorporates delay-embedding available data into identification processes. We illustrate application this periodic Burgers' equation boundary cavity flow governed by two-dimensional incompressible Navier-Stokes equations. examples proposed successful accomplishing tasks with sub-millisecond computation time required evaluation input closed-loop, thereby allowing real-time deployment.

参考文章(44)
Floris Takens, Detecting strange attractors in turbulence Lecture Notes in Mathematics. ,vol. 898, pp. 366- 381 ,(1981) , 10.1007/BFB0091924
Gal Berkooz, John Leask Lumley, Philip Holmes, Turbulence, Coherent Structures, Dynamical Systems and Symmetry ,(1996)
Matthew O. Williams, Ioannis G. Kevrekidis, Clarence W. Rowley, A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition Journal of Nonlinear Science. ,vol. 25, pp. 1307- 1346 ,(2015) , 10.1007/S00332-015-9258-5
Lars Grüne, Jürgen Pannek, Lars Grüne, Jürgen Pannek, None, Nonlinear Model Predictive Control ,(2011)
Joshua L. Proctor, Steven L. Brunton, J. Nathan Kutz, Dynamic Mode Decomposition with Control Siam Journal on Applied Dynamical Systems. ,vol. 15, pp. 142- 161 ,(2016) , 10.1137/15M1013857
Steven L. Brunton, Bernd R. Noack, Closed-Loop Turbulence Control: Progress and Challenges Applied Mechanics Reviews. ,vol. 67, pp. 050801- ,(2015) , 10.1115/1.4031175
W.F. Arnold, A.J. Laub, Generalized eigenproblem algorithms and software for algebraic Riccati equations Proceedings of the IEEE. ,vol. 72, pp. 1746- 1754 ,(1984) , 10.1109/PROC.1984.13083
D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert, Survey Constrained model predictive control: Stability and optimality Automatica. ,vol. 36, pp. 789- 814 ,(2000) , 10.1016/S0005-1098(99)00214-9
B. O. Koopman, Hamiltonian Systems and Transformation in Hilbert Space Proceedings of the National Academy of Sciences of the United States of America. ,vol. 17, pp. 315- 318 ,(1931) , 10.1073/PNAS.17.5.315