Monitoring and Improving Markov Chain Monte Carlo Convergence by Partitioning

作者: Douglas Nielsen VanDerwerken

DOI:

关键词:

摘要: Monitoring and Improving Markov Chain Monte Carlo Convergence by Partitioning Douglas Nielsen VanDerwerken Department of Statistical Science Duke University

参考文章(91)
Peter Rousseeuw, L Kaufman, Clustering by means of medoids Proc. Statistical Data Analysis Based on the L1 Norm Conference, Neuchatel, 1987. pp. 405- 416 ,(1987)
Haakon Michael Austad, Parallel Multiple Proposal MCMC Algorithms 40. ,(2007)
Scott C. Schmidler, Dawn B. Woodard, LOWER BOUNDS ON THE CONVERGENCE RATES OF ADAPTIVE MCMC METHODS ,(2011)
Reza Hosseini, Divergence of sample quantiles arXiv: Statistics Theory. ,(2010)
Mike West, Approximating posterior distributions by mixtures Journal of the royal statistical society series b-methodological. ,vol. 55, pp. 409- 422 ,(1993) , 10.1111/J.2517-6161.1993.TB01911.X
Radford M. Neal, Annealed importance sampling Statistics and Computing. ,vol. 11, pp. 125- 139 ,(2001) , 10.1023/A:1008923215028
Radu V. Craiu, Antonio F. Di Narzo, Yan Bai, Divide and Conquer: A Mixture-Based Approach to Regional Adaptation for MCMC Journal of Computational and Graphical Statistics. ,vol. 20, pp. 63- 79 ,(2011) , 10.1198/JCGS.2010.09035
Agostino Nobile, A hybrid Markov chain for the Bayesian analysis of the multinomial probit model Statistics and Computing. ,vol. 8, pp. 229- 242 ,(1998) , 10.1023/A:1008905311214
Karen Vines, Nicky Best, Kate Cowles, Martyn Plummer, CODA: convergence diagnosis and output analysis for MCMC ,(2006)
Charles J. Geyer, Markov Chain Monte Carlo Maximum Likelihood Interface Foundation of North America. ,(1991)