Identification of MIMO Hammerstein models using least squares support vector machines

作者: Ivan Goethals , Kristiaan Pelckmans , Johan A.K. Suykens , Bart De Moor

DOI: 10.1016/J.AUTOMATICA.2005.02.002

关键词:

摘要: This paper studies a method for the identification of Hammerstein models based on least squares support vector machines (LS-SVMs). The technique allows determination memoryless static nonlinearity as well estimation model parameters dynamic ARX part. is done by applying equivalent Bai's overparameterization systems in an LS-SVM context. SISO MIMO cases are elaborated. can lead to significant improvements with respect classical methods illustrated number examples. Another important advantage that no stringent assumptions nature need be imposed except certain degree smoothness.

参考文章(33)
Marcelo Espinoza, Kristiaan Pelckmans, Luc Hoegaerts, Johan A.K. Suykens, Bart De Moor, A comparative study of ls-svm’s applied to the silver box identification problem IFAC Proceedings Volumes. ,vol. 37, pp. 369- 374 ,(2004) , 10.1016/S1474-6670(17)31251-X
Tomas McKelvey, Christian Hanner, On identification of harnmerstein systems using excitation with a finite number of levels IFAC Proceedings Volumes. ,vol. 36, pp. 57- 60 ,(2003) , 10.1016/S1474-6670(17)34738-9
Robert Tibshirani, Trevor Hastie, Jerome H. Friedman, The Elements of Statistical Learning ,(2001)
Jos De Brabanter, Tony Van Gestel, Joos Vandewalle, Bart De Moor, Johan A K Suykens, Least Squares Support Vector Machines ,(2002)
Christopher M. Bishop, Neural networks for pattern recognition ,(1995)
J.A.K. Suykens, J. Vandewalle, Least Squares Support Vector Machine Classifiers Neural Processing Letters. ,vol. 9, pp. 293- 300 ,(1999) , 10.1023/A:1018628609742
C. K. I. Williams, Prediction with Gaussian processes: from linear regression to linear prediction and beyond Proceedings of the NATO Advanced Study Institute on Learning in graphical models. pp. 599- 621 ,(1999) , 10.1007/978-94-011-5014-9_23
Jos De Brabanter, Kristiaan Pelckmans, Bart De Moor, Johan A. K. Suykens, Ivan Goethals, Componentwise Least Squares Support Vector Machines arXiv: Learning. ,(2005)
E.J. Dempsey, D.T. Westwick, Identification of Hammerstein models with cubic spline nonlinearities IEEE Transactions on Biomedical Engineering. ,vol. 51, pp. 237- 245 ,(2004) , 10.1109/TBME.2003.820384