Investigation of Expert Addition Criteria for Dynamically Changing Online Ensemble Classifiers with Multiple Adaptive Mechanisms

作者: Rashid Bakirov , Bogdan Gabrys

DOI: 10.1007/978-3-642-41142-7_65

关键词:

摘要: We consider online classification problem, where concepts may change over time. A prominent model for creation of dynamically changing ensemble is used in Dynamic Weighted Majority (DWM) method. analyse this model, and address its high sensitivity to misclassifications resulting unnecessary large ensembles, particularly while running on noisy data. propose evaluate various criteria adding new experts an ensemble. test our algorithms a comprehensive selection synthetic data establish that they lead the significant reduction number created show slightly better accuracy rates than original models non-ensemble adaptive benchmarking.

参考文章(20)
Thomas G. Dietterich, Ensemble Methods in Machine Learning Multiple Classifier Systems. pp. 1- 15 ,(2000) , 10.1007/3-540-45014-9_1
Ludmila I. Kuncheva, Anand Narasimhamurthy, A framework for generating data to simulate changing environments conference on artificial intelligence for applications. pp. 384- 389 ,(2007)
João Gama, Pedro Medas, Gladys Castillo, Pedro Rodrigues, Learning with Drift Detection Advances in Artificial Intelligence – SBIA 2004. pp. 286- 295 ,(2004) , 10.1007/978-3-540-28645-5_29
Cosma Rohilla Shalizi, Aaron Clauset, Abigail Z. Jacobs, Adapting to Non-stationarity with Growing Expert Ensembles arXiv: Machine Learning. ,(2011)
Dymitr Ruta, Bogdan Gabrys, Classifier selection for majority voting Information Fusion. ,vol. 6, pp. 63- 81 ,(2005) , 10.1016/J.INFFUS.2004.04.008
Jeffrey C Schlimmer, Richard H Granger, Incremental Learning from Noisy Data Machine Learning. ,vol. 1, pp. 317- 354 ,(1986) , 10.1023/A:1022810614389
Jón Atli Benediktsson, Fabio Roli, Josef Kittler, Multiple Classifier Systems ,(2008)
N. Littlestone, M.K. Warmuth, The weighted majority algorithm Information & Computation. ,vol. 108, pp. 212- 261 ,(1994) , 10.1006/INCO.1994.1009
Jeremy Z. Kolter, Marcus A. Maloof, Using additive expert ensembles to cope with concept drift Proceedings of the 22nd international conference on Machine learning - ICML '05. pp. 449- 456 ,(2005) , 10.1145/1102351.1102408