A Semi-Lagrangian approximation of min-max type for the stationary Mean Curvature equation

作者: E. Carlini , R. Ferretti

DOI: 10.1007/978-3-540-69777-0_81

关键词:

摘要: We propose a technique to treat degenerate elliptic equations, focusing on the model problem of stationary Mean Curvature Motion equation in two space dimensions. This may be interpreted as stationary, fully discrete version schemes proposed slightly different forms by Catte et al. and Kohn Serfaty. study consistency monotonicity scheme correct implementation Dirichlet boundary conditions. Numerical tests are also presented.

参考文章(7)
Elisabetta Carlini, Maurizio Falcone, Roberto Ferretti, A Time—Adaptive Semi—Lagrangian Approximation to Mean Curvature Motion Springer. pp. 732- 739 ,(2006) , 10.1007/978-3-540-34288-5_71
Francine Catté, Françoise Dibos, Georges Koepfler, A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets SIAM Journal on Numerical Analysis. ,vol. 32, pp. 1895- 1909 ,(1995) , 10.1137/0732085
Robert Kohn, Sylvia Serfaty, A deterministic‐control‐based approach motion by curvature Communications on Pure and Applied Mathematics. ,vol. 59, pp. 344- 407 ,(2006) , 10.1002/CPA.20101
H Mete Soner, Nizar Touzi, A stochastic representation for the level set equations Communications in Partial Differential Equations. ,vol. 27, pp. 2031- 2053 ,(2002) , 10.1081/PDE-120016135
L. C. Evans, J. Spruck, Motion of level sets by mean curvature. I Journal of Differential Geometry. ,vol. 33, pp. 635- 681 ,(1991) , 10.4310/JDG/1214446559
G. Barles, P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations Asymptotic Analysis. ,vol. 4, pp. 271- 283 ,(1991) , 10.3233/ASY-1991-4305
M Falcone, Roberto Ferretti, Consistency of a large time-step scheme for mean curvature motion ENUMATH 2001 Fourth European Conference on Numerical Mathematics. pp. 495- 502 ,(2003)