Kernel methods for advanced statistical process control

作者: Issam Ben Khedhiri

DOI: 10.17877/DE290R-3854

关键词:

摘要:

参考文章(63)
Layth C Alwan, Harry V Roberts, The Problem of Misplaced Control Limits Journal of The Royal Statistical Society Series C-applied Statistics. ,vol. 44, pp. 269- 278 ,(1995) , 10.2307/2986036
Paul F. Evangelista, Mark J. Embrechts, Boleslaw K. Szymanski, Some Properties of the Gaussian Kernel for One Class Learning Lecture Notes in Computer Science. pp. 269- 278 ,(2007) , 10.1007/978-3-540-74690-4_28
Bernhard Schölkopf, Alexander J. Smola, Learning with Kernels The MIT Press. pp. 626- ,(2018) , 10.7551/MITPRESS/4175.001.0001
K. -R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, V. Vapnik, Predicting Time Series with Support Vector Machines international conference on artificial neural networks. pp. 999- 1004 ,(1997) , 10.1007/BFB0020283
Fei Liu, Chang-Ying Wu, Improvement on Multivariate Statistical Process Monitoring Using Multi-scale ICA Independent Component Analysis and Blind Signal Separation. pp. 376- 383 ,(2006) , 10.1007/11679363_47
Maysa S De Magalhães, Antonio FB Costa, Francisco D Moura Neto, None, Adaptive control charts: A Markovian approach for processes subject to independent disturbances ☆ International Journal of Production Economics. ,vol. 99, pp. 236- 246 ,(2006) , 10.1016/J.IJPE.2004.12.013
Thomas J. Harris, William H. Ross, Statistical process control procedures for correlated observations Canadian Journal of Chemical Engineering. ,vol. 69, pp. 48- 57 ,(1991) , 10.1002/CJCE.5450690106
David M.J. Tax, Robert P.W. Duin, Support Vector Data Description Machine Learning. ,vol. 54, pp. 45- 66 ,(2004) , 10.1023/B:MACH.0000008084.60811.49