Gravitational radiations of generic isolated horizons and nonrotating dynamical horizons from asymptotic expansions

作者: Yu-Huei Wu , Chih-Hung Wang

DOI: 10.1103/PHYSREVD.80.063002

关键词:

摘要: Instead of using a three-dimensional analysis on quasilocal horizons, we adopt four-dimensional asymptotic expansion to study the next order contributions from nonlinearity general relativity. From similarity between null infinity and proper reference frames are chosen compatible constant spinors for an observer measure energy-momentum flux near horizons. In particular, focus Bondi-Sachs gravitational radiation horizons compare our results with Ashtekar-Kirshnan formula. The generic isolated nonrotating dynamical discussed in this paper.

参考文章(8)
Subrahmanyan Chandrasekhar, The Mathematical Theory of Black Holes ,(1983)
G Bergqvist, Quasilocal mass for event horizons Classical and Quantum Gravity. ,vol. 9, pp. 1753- 1768 ,(1992) , 10.1088/0264-9381/9/7/009
Abhay Ashtekar, Christopher Beetle, Jerzy Lewandowski, Geometry of Generic Isolated Horizons arXiv: General Relativity and Quantum Cosmology. ,(2001) , 10.1088/0264-9381/19/6/311
Abhay Ashtekar, Badri Krishnan, Dynamical Horizons and their Properties Physical Review D. ,vol. 68, pp. 104030- ,(2003) , 10.1103/PHYSREVD.68.104030
Ezra T. Newman, Theodore W. J. Unti, Behavior of Asymptotically Flat Empty Spaces Journal of Mathematical Physics. ,vol. 3, pp. 891- 901 ,(1962) , 10.1063/1.1724303
The Alinement of Frames of Reference at Null Infinity for Asymptotically Flat Einstein-Maxwell Manifolds Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 341, pp. 451- 461 ,(1975) , 10.1098/RSPA.1975.0003
New Conservation Laws for Zero Rest-Mass Fields in Asymptotically Flat Space-Time Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 305, pp. 175- 204 ,(1968) , 10.1098/RSPA.1968.0112
A. Dougan, L. Mason, Quasilocal mass constructions with positive energy. Physical Review Letters. ,vol. 67, pp. 2119- 2122 ,(1991) , 10.1103/PHYSREVLETT.67.2119