Alpha-theory: An elementary axiomatics for nonstandard analysis

作者: Vieri Benci , Mauro Di Nasso

DOI: 10.1016/S0723-0869(03)80038-5

关键词:

摘要: Abstract The methods of nonstandard analysis are presented in elementary terms by postulating a few natural properties for an infinite “ideal” number α. resulting axiomatic system, including formalization interpretation Cauchy's idea infinitesimals, is related to the existence ultrafilters with special properties, and independent ZFC. Alpha-Theory supports feeling that technical notions such as superstructure, ultrapower transfer principle definitely not needed order carry out calculus actual infinitesimals.

参考文章(40)
Mauro Di Nasso, Nonstandard Analysis by Means of Ideal Values of Sequences Springer, Dordrecht. ,vol. 306, pp. 63- 73 ,(2001) , 10.1007/978-94-015-9757-9_6
W. A. J. Luxemburg, Non-Standard Analysis Springer Netherlands. pp. 107- 119 ,(1977) , 10.1007/978-94-010-1138-9_6
Nasso Mauro Di, ON THE FOUNDATIONS OF NONSTANDARD MATHEMATICS Mathematica japonicae. ,vol. 50, pp. 131- 160 ,(1999)
W. A. J. Luxemburg, K. D. Stroyan, Introduction to the theory of infinitesimals ,(1976)
Nigel Cutland, L. Arkeryd, C. Ward Henson, Nonstandard analysis : theory and applications Kluwer Academic Publishers. ,(1997)
Urlich Felgner, Comparison of the axioms of local and universal choice Fundamenta Mathematicae. ,vol. 71, pp. 43- 62 ,(1971) , 10.4064/FM-71-1-43-62
Vieri Benci, Mauro Di Nasso, A ring homomorphism is enough to get nonstandard analysis Bulletin of The Belgian Mathematical Society-simon Stevin. ,vol. 10, pp. 481- 490 ,(2003) , 10.36045/BBMS/1070645796
H. Jerome Keisler, Foundations of infinitesimal calculus ,(1976)
Martin Davis, Applied Nonstandard Analysis ,(1977)