Short term-Long term dual model Background Subtractor

作者: G. Sreelekha , Arun Varghese

DOI: 10.1145/2818567.2818652

关键词:

摘要: Background subtraction is the most common technique to segment moving objects in a video sequence. We propose data driven background method which uses two models for each pixel: long term model and short model. The captures evolution of while adapts quickly rapidly changing conditions like swaying tree leaves or camera jitter. Each comprises collection previously observed pixel values. Two segmentation maps are generated based on whether current value finds required number matches with samples corresponding final mask obtained as an intersection two. Evaluation tests public CDnet dataset shows improved performance compared popular methods.

参考文章(20)
Ahmed Elgammal, David Harwood, Larry Davis, Non-parametric Model for Background Subtraction Lecture Notes in Computer Science. pp. 751- 767 ,(2000) , 10.1007/3-540-45053-X_48
Tomasz Kryjak, Marek Gorgon, Real-time implementation of the ViBe foreground object segmentation algorithm federated conference on computer science and information systems. pp. 591- 596 ,(2013)
Nir Friedman, Stuart Russell, Image segmentation in video sequences: a probabilistic approach uncertainty in artificial intelligence. pp. 175- 181 ,(1997)
Martin Hofmann, Philipp Tiefenbacher, Gerhard Rigoll, Background segmentation with feedback: The Pixel-Based Adaptive Segmenter computer vision and pattern recognition. pp. 38- 43 ,(2012) , 10.1109/CVPRW.2012.6238925
Pierre-Luc St-Charles, Guillaume-Alexandre Bilodeau, Robert Bergevin, SuBSENSE: A Universal Change Detection Method With Local Adaptive Sensitivity IEEE Transactions on Image Processing. ,vol. 24, pp. 359- 373 ,(2015) , 10.1109/TIP.2014.2378053
Nil Goyette, Pierre-Marc Jodoin, Fatih Porikli, Janusz Konrad, Prakash Ishwar, None, A novel video dataset for change detection benchmarking. IEEE Transactions on Image Processing. ,vol. 23, pp. 4663- 4679 ,(2014) , 10.1109/TIP.2014.2346013
Thierry Bouwmans, Fida El Baf, Bertrand Vachon, Background Modeling using Mixture of Gaussians for Foreground Detection - A Survey Recent Patents on Computer Science. ,vol. 1, pp. 219- 237 ,(2008) , 10.2174/1874479610801030219
Sebastian Brutzer, Benjamin Hoferlin, Gunther Heidemann, Evaluation of background subtraction techniques for video surveillance CVPR 2011. pp. 1937- 1944 ,(2011) , 10.1109/CVPR.2011.5995508