THE FRACTAL DIMENSION OF GROWTH PERIMETERS

作者: Alla E. MARGOLINA

DOI: 10.1016/B978-0-444-86995-1.50066-4

关键词:

摘要: The fractal dimension dG of cluster perimeters generated by a recently proposed ‘butterfly’ growth walk is considered. In the long-range limit on percolation cluster, appears to be equal singly connected bonds: dG= 1/v. new relation for chemical dl proposed: =df/(df-dG). short-range Euclidean lattice in same universality class as random walk. dynamic aspect discussed and continuously tunable spectral obtained. Both short-and limits this diffusion process are different from percolation.

参考文章(8)
A Coniglio, Cluster structure near the percolation threshold Journal of Physics A. ,vol. 15, pp. 3829- 3844 ,(1982) , 10.1088/0305-4470/15/12/032
D. Stauffer, Scaling theory of percolation clusters Physics Reports. ,vol. 54, pp. 1- 74 ,(1979) , 10.1016/0370-1573(79)90060-7
H. Eugene Stanley, Application of fractal concepts to polymer statistics and to anomalous transport in randomly porous media Journal of Statistical Physics. ,vol. 36, pp. 843- 860 ,(1984) , 10.1007/BF01012944
Francois Leyvraz, H. Eugene Stanley, To What Class of Fractals Does the Alexander-Orbach Conjecture Apply? Physical Review Letters. ,vol. 51, pp. 2048- 2051 ,(1983) , 10.1103/PHYSREVLETT.51.2048
H. E. Stanley, I. Majid, A. Margolina, A. Bunde, Direct Tests of the Aharony-Stauffer Argument Physical Review Letters. ,vol. 53, pp. 1706- 1706 ,(1984) , 10.1103/PHYSREVLETT.53.1706
S Havlin, R Nossal, Topological properties of percolation clusters Journal of Physics A. ,vol. 17, ,(1984) , 10.1088/0305-4470/17/8/007
Armin Bunde, Hans J. Herrmann, Alla Margolina, H. Eugene Stanley, Universality classes for spreading phenomena: A new model with fixed static but continuously tunable kinetic exponents. Physical Review Letters. ,vol. 55, pp. 653- 656 ,(1985) , 10.1103/PHYSREVLETT.55.653