Identification of Hysteretic Control Influence Operators Representing Smart Actuators, Part II: Convergent Approximations:

作者: H. T. Banks , A. J. Kurdila , G. Webb

DOI: 10.1177/1045389X9700800606

关键词:

摘要: In a previous paper, the authors investigated lower semicontinuity properties of two generalizations classical Preisach operator: smoothed operator and Krasnoselskii/Pokrovskii (KP) integral hysteresis operators. particular, it was demonstrated that output least squares identification problem for KP is well-posed over compact subsets plane. The hysteretic control influence shown to be equivalent measure in space probability measures taken with weak* topology. this consistent convergent approximation scheme introduced class operator. Galerkin function parameter convergent. A numerical example presented illustrates aspects theory derived paper.

参考文章(17)
R. C. Smith, H. T. Banks, Y. Wang, H. Thomas Banks, Smart material structures: Modeling, estimation, and control ,(1996)
A. M. Andronikou, G. A. Bekey, F. Y. Hadaegh, Identifiability of Nonlinear Systems with Hysteretic Elements american control conference. ,vol. 105, pp. 209- 214 ,(1983) , 10.1115/1.3140660
Kazufumi Ito, Harvey Thomas Banks, Y. Wang, Well posedness for damped second-order systems with unbounded input operators Differential and Integral Equations. ,vol. 8, pp. 587- 606 ,(1995)
C. Liang, C.A. Rogers, One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials Journal of Intelligent Material Systems and Structures. ,vol. 1, pp. 207- 234 ,(1990) , 10.1177/1045389X9000100205
Declan C. Hughes, John T. Wen, Preisach modeling of piezoceramic hysteresis: independent stress effect Smart Structures and Materials 1995: Mathematics and Control in Smart Structures. ,vol. 2442, pp. 328- 336 ,(1995) , 10.1117/12.208852
Harvey Thomas Banks, K. Kunisch, Estimation Techniques for Distributed Parameter Systems ,(1989)
H. T. Banks, A. J. Kurdila, G. Webb, Identification of Hysteretic Control Influence Operators Representing Smart Actuators Part I: Formulation Mathematical Problems in Engineering. ,vol. 3, pp. 287- 328 ,(1997) , 10.1155/S1024123X97000586
C. VERDI, A. VISINTIN, Numerical Approximation of Hysteresis Problems Ima Journal of Numerical Analysis. ,vol. 5, pp. 447- 463 ,(1985) , 10.1093/IMANUM/5.4.447
G. Tao, P.V. Kokotovic, Adaptive control of plants with unknown hystereses IEEE Transactions on Automatic Control. ,vol. 40, pp. 200- 212 ,(1995) , 10.1109/9.341778