Novel synthesis of LiMnPO4·Li3V2(PO4)3/C composite cathode material

作者: Bao Zhang , Xiao-wei Wang , Jia-feng Zhang

DOI: 10.1039/C4RA05711B

关键词:

摘要: A carbon-coated LiMnPO4·Li3V2(PO4)3 composite cathode material is synthesized from a rod-like MnV2O6·4H2O precursor prepared via aqueous precipitation for the first time, followed by chemical reduction and lithiation with oxalic acid as reducing agent glucose carbon source. XRD results indicate that orthorhombic LiMnPO4 monoclinic Li3V2(PO4)3 co-exist. SEM reveal thickness of about 80 nm LiMnPO4·Li3V2(PO4)3/C possesses micro/nano sphere-like morphology. HRTEM sample core–shell structure, where external shell amorphous at core are LiMnPO4, unit cells. The initial discharge capacity 110 mA h g−1, 104.4 100.6 g−1 80.4 rate 0.1 C, 1 3 C 10 respectively. cell shows excellent cycling stability good capability lithium-ion batteries.

参考文章(22)
Laifen Qin, Yonggao Xia, Bao Qiu, Hailiang Cao, Yuanzhuang Liu, Zhaoping Liu, Synthesis and electrochemical performances of (1−x)LiMnPO4·xLi3V2(PO4)3/C composite cathode materials for lithium ion batteries Journal of Power Sources. ,vol. 239, pp. 144- 150 ,(2013) , 10.1016/J.JPOWSOUR.2013.03.063
Gang Yang, Haidong Liu, Hongmei Ji, Zhongzhong Chen, Xuefan Jiang, Temperature-controlled microwave solid-state synthesis of Li3V2(PO4)3 as cathode materials for lithium batteries Journal of Power Sources. ,vol. 195, pp. 5374- 5378 ,(2010) , 10.1016/J.JPOWSOUR.2010.03.037
Y.Q. Qiao, J.P. Tu, X.L. Wang, C.D. Gu, The low and high temperature electrochemical performances of Li3V2(PO4)3/C cathode material for Li-ion batteries Journal of Power Sources. ,vol. 199, pp. 287- 292 ,(2012) , 10.1016/J.JPOWSOUR.2011.10.054
Zhaohui Chen, J. R. Dahn, Reducing Carbon in LiFePO4 / C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density Journal of The Electrochemical Society. ,vol. 149, pp. 1184- 1189 ,(2002) , 10.1149/1.1498255
Tao Liu, Jingjing Xu, Binbin Wu, Qingbo Xia, Xiaodong Wu, Porous LiMn0.7Fe0.3PO4–C prepared by a thermal decomposition method as high performance cathode materials for Li-ion batteries RSC Advances. ,vol. 3, pp. 13337- 13341 ,(2013) , 10.1039/C3RA41672K
Haidong Liu, Gang Yang, Xiaofei Zhang, Po Gao, Lu Wang, Jianhui Fang, João Pinto, Xuefang Jiang, Kinetics of conventional carbon coated-Li3V2(PO4)3 and nanocomposite Li3V2(PO4)3/graphene as cathode materials for lithium ion batteries Journal of Materials Chemistry. ,vol. 22, pp. 11039- 11047 ,(2012) , 10.1039/C2JM31004J
X.J. Chen, G.S. Cao, X.B. Zhao, J.P. Tu, T.J. Zhu, Electrochemical performance of LiFe1−xVxPO4/carbon composites prepared by solid-state reaction Journal of Alloys and Compounds. ,vol. 463, pp. 385- 389 ,(2008) , 10.1016/J.JALLCOM.2007.09.013
Kyu Tae Lee, Wang H. Kan, Linda F. Nazar, Proof of Intercrystallite Ionic Transport in LiMPO4 Electrodes (M = Fe, Mn) Journal of the American Chemical Society. ,vol. 131, pp. 6044- 6045 ,(2009) , 10.1021/JA8090559
GX Wang, SL Bewlay, K Konstantinov, HK Liu, SX Dou, J-H Ahn, None, Physical and electrochemical properties of doped lithium iron phosphate electrodes Electrochimica Acta. ,vol. 50, pp. 443- 447 ,(2004) , 10.1016/J.ELECTACTA.2004.04.047
Sébastien Patoux, Călin Wurm, Mathieu Morcrette, Gwenaëlle Rousse, Christian Masquelier, A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3 Journal of Power Sources. ,vol. 119, pp. 278- 284 ,(2003) , 10.1016/S0378-7753(03)00150-2