The Navier–Stokes equations with non-autonomous forcing

作者: Alexandre N. Carvalho , José A. Langa , James C. Robinson

DOI: 10.1007/978-1-4614-4581-4_11

关键词:

摘要: The two-dimensional incompressible Navier–Stokes equations provide one of the canonical examples an infinite-dimensional dynamical system. In this chapter we illustrate results Chaps. 2 and 4 by driving dynamics with a non-autonomous forcing term. With such equation, which has no clear underlying structure (like Lyapunov function, for example), application more ‘global’ these two chapters (existence finite-dimensional pullback attractor) is essentially as far can currently proceed.

参考文章(35)
José M. Arrieta, Alexandre N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations Transactions of the American Mathematical Society. ,vol. 352, pp. 285- 310 ,(1999) , 10.1090/S0002-9947-99-02528-3
Jack K. Hale, Infinite dimensional dynamical systems LNM. ,vol. 1007, pp. 379- 400 ,(1981) , 10.1007/BFB0061425
Tosio Kato, Hiroshi Fujita, On the nonstationary Navier-Stokes system Rendiconti del Seminario Matematico della Università di Padova. ,vol. 32, pp. 243- 260 ,(1962)
O. A. Ladyzhenskaya, A dynamical system generated by the Navier-Stokes equations Journal of Mathematical Sciences. ,vol. 3, pp. 458- 479 ,(1975) , 10.1007/BF01084684