Acrylodan-conjugated Cysteine Side Chains Reveal Conformational State and Ligand Site Locations of the Acetylcholine-binding Protein *

作者: Ryan E. Hibbs , Todd T. Talley , Palmer Taylor

DOI: 10.1074/JBC.M403713200

关键词:

摘要: We undertook cysteine substitution mutagenesis and fluorophore conjugation at selected residue positions to map sites of ligand binding changes in solvent exposure the acetylcholine-binding protein from Lymnaea stagnalis, a nicotinic receptor surrogate. Acrylodan fluorescence emission is highly sensitive its local environment, when bound protein, exhibits both intensity wavelength that are reflected degree exclusion effective dielectric constant environment fluorophore. Hence, mutants were generated based on crystal structure predicted sites, parameters assayed acrylodan-conjugated proteins. This approach allows one analyze around conjugated side chain induced by ligand. Introduction an acrylodan-cysteine conjugate position 178 yields large blue shift with α-bungarotoxin association, whereas agonists alkaloid antagonists induce red shifts reflecting this position. Such residue-selective suggest certain ligands can distinct conformational states mutually exclusive results disparate portals entry orientations α-toxin smaller acetylcholine congeners pocket. Labeling other pocket also reveals distinctive spectral for α-bungarotoxin, agonists, antagonists.

参考文章(36)
P. Taylor, H. Osaka, B. Molles, S. H. Keller, S. Malany, Contributions of Studies of the Nicotinic Receptor from Muscle to Defining Structural and Functional Properties of Ligand-Gated Ion Channels Handbook of experimental pharmacology. ,vol. 144, pp. 79- 100 ,(2000) , 10.1007/978-3-642-57079-7_5
G. Weiland, B. Georgia, S. Lappi, C.F. Chignell, P. Taylor, Kinetics of Agonist-mediated Transitions in State of the Cholinergic Receptor* Journal of Biological Chemistry. ,vol. 252, pp. 7648- 7656 ,(1977) , 10.1016/S0021-9258(17)41016-7
August B. Smit, Naweed I. Syed, Dick Schaap, Jan van Minnen, Judith Klumperman, Karel S. Kits, Hans Lodder, Roel C. van der Schors, René van Elk, Bertram Sorgedrager, KatjuS̆a Brejc, Titia K. Sixma, Wijnand P. M. Geraerts, A glia-derived acetylcholine-binding protein that modulates synaptic transmission Nature. ,vol. 411, pp. 261- 268 ,(2001) , 10.1038/35077000
P. A. Quiram, J. M. McIntosh, S. M. Sine, Pairwise Interactions between Neuronal α7Acetylcholine Receptors and α-Conotoxin PnIB Journal of Biological Chemistry. ,vol. 275, pp. 4889- 4896 ,(2000) , 10.1074/JBC.275.7.4889
Arthur Karlin, Emerging structure of the Nicotinic Acetylcholine receptors Nature Reviews Neuroscience. ,vol. 3, pp. 102- 114 ,(2002) , 10.1038/NRN731
Hitoshi Osaka, Siobhan Malany, Brian E. Molles, Steven M. Sine, Palmer Taylor, Pairwise electrostatic interactions between α-neurotoxins and γ, δ, and ε subunits of the nicotinic acetylcholine receptor Journal of Biological Chemistry. ,vol. 275, pp. 5478- 5484 ,(2000) , 10.1074/JBC.275.8.5478
KatjuS̆a Brejc, Willem J. van Dijk, Remco V. Klaassen, Mascha Schuurmans, John van der Oost, August B. Smit, Titia K. Sixma, Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors Nature. ,vol. 411, pp. 269- 276 ,(2001) , 10.1038/35077011
Luisa Lozzi, Barbara Lelli, Ylenia Runci, Silvia Scali, Andrea Bernini, Chiara Falciani, Alessandro Pini, Neri Niccolai, Paolo Neri, Luisa Bracci, Rational Design and Molecular Diversity for the Construction of Anti-α-Bungarotoxin Antidotes with High Affinity and In Vivo Efficiency Chemistry & Biology. ,vol. 10, pp. 411- 417 ,(2003) , 10.1016/S1074-5521(03)00094-2
Scott B. Hansen, Zoran Radić, Todd T. Talley, Brian E. Molles, Tom Deerinck, Igor Tsigelny, Palmer Taylor, Tryptophan fluorescence reveals conformational changes in the acetylcholine binding protein. Journal of Biological Chemistry. ,vol. 277, pp. 41299- 41302 ,(2002) , 10.1074/JBC.C200462200