Modelling of work hardening and stress saturation in FCC metals

作者: Erik Nes

DOI: 10.1016/S0079-6425(97)00032-7

关键词:

摘要: Abstract A work hardening theory has been developed based on a microstructural concept comprising three elements; the cell/subgrain size, δ, dislocation density inside cells, ρi, and cell boundary or sub misorientation, ρb ϕ. The is statistical approach to storage of dislocations. This predicts that slip length, L, scales with inverse square root stored density, ρ−1/2, also, substructure evolution which consistent scaling (similitude) at zero degree Kelvin, stress τ

参考文章(67)
H. Mecking, STRAIN HARDENING AND DYNAMIC RECOVERY Dislocation Modelling of Physical Systems#R##N#Proceedings of the International Conference, Gainesville, Florida, USA, June 22–27, 1980. pp. 197- 211 ,(1981) , 10.1016/B978-0-08-026724-1.50026-1
E. Nes, A.L. Dons, N. Ryum, Substructure Strengthening of Cold Rolled Aluminium Alloys Strength of Metals and Alloys (ICSMA 6). pp. 425- 430 ,(1982) , 10.1016/B978-1-4832-8423-1.50071-7
Josef Čadek, Creep in metallic materials Materials Science Monographs. ,vol. 48, ,(1988)
A. S. Krausz, K. Krausz, Unified constitutive laws of plastic deformation Academic Press. ,(1996)
William D Nix, Theory of Dislocations ,(1968)
J. Washburn, G. Murty, EFFECT OF INITIAL DISLOCATION DENSITY ON THE STRESS–STRAIN CURVE AND ON SURFACE INDICATION OF SLIP IN COPPER Canadian Journal of Physics. ,vol. 45, pp. 523- 539 ,(1967) , 10.1139/P67-046
T.E. Volin, K.H. Lie, R.W. Balluffi, Measurement of rapid mass transport along individual dislocations in aluminum Acta Metallurgica. ,vol. 19, pp. 263- 274 ,(1971) , 10.1016/0001-6160(71)90092-7
J Harper, J.E Dorn, VISCOUS CREEP OF ALUMINUM NEAR ITS MELTING TEMPERATURE Acta Metallurgica. ,vol. 5, pp. 654- 665 ,(1957) , 10.1016/0001-6160(57)90112-8
T. S. Lundy, J. F. Murdock, Diffusion of Al26 and Mn54 in Aluminum Journal of Applied Physics. ,vol. 33, pp. 1671- 1673 ,(1962) , 10.1063/1.1728808