Stochastic Asymptotic Stability of SIR Model with Variable Diffusion Rates

作者: Henri Schurz , Kursad Tosun

DOI: 10.1007/S10884-014-9415-9

关键词:

摘要: We introduce random fluctuations on contact and recovery rates in deterministic SIR model with disease deaths nonparametric manner obtain stochastic counterparts general diffusion coefficients (functional rates). $$\begin{aligned} \displaystyle dS&= \,\Big (-\beta S I +\mu (K-S)\Big )~dt - I~ F_1\big (S,I,R\big ) ~dW_1\nonumber \\ dI&= (\beta I-\big (\alpha +\gamma \big )I\Big )~ dt + ~dW_1-I~F_2\big ~dW_2 dR&= \mu R\Big )~dt+ I~F_2\big ~dW_2. \nonumber \end{aligned}$$ (1) The introduced has functional which contains arbitrary local Lipschitz-continuous functions \(F_i\)’s defined {\mathbb {D}}=\{(S,I,R) \in {R}}^3: ~S\ge 0, ~I \ge ~R ~S+I+R\le K\}. \end{aligned}$$ In this paper we prove the global existence of a unique strong solution discuss asymptotic stability free endemic equilibria visualize our results some simulations to confirm them.

参考文章(20)
A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A Stochastic Differential Equation SIS Epidemic Model Siam Journal on Applied Mathematics. ,vol. 71, pp. 876- 902 ,(2011) , 10.1137/10081856X
E. Beretta, V. Capasso, On the general structure of epidemic systems. Global asymptotic stability Computers & Mathematics With Applications. ,vol. 12, pp. 677- 694 ,(1986) , 10.1016/0898-1221(86)90054-4
L. Imhof, S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models Journal of Differential Equations. ,vol. 217, pp. 26- 53 ,(2005) , 10.1016/J.JDE.2005.06.017
Daqing Jiang, Jiajia Yu, Chunyan Ji, Ningzhong Shi, Asymptotic behavior of global positive solution to a stochastic SIR model Mathematical and Computer Modelling. ,vol. 54, pp. 221- 232 ,(2011) , 10.1016/J.MCM.2011.02.004
Elisabetta Tornatore, Stefania Maria Buccellato, Pasquale Vetro, Stability of a stochastic SIR system Physica A: Statistical Mechanics and its Applications. ,vol. 354, pp. 111- 126 ,(2005) , 10.1016/J.PHYSA.2005.02.057