Infinite non-negative matrix factorization

作者: Morten Morup , Mikkel N. Schmidt

DOI:

关键词:

摘要: We propose the infinite non-negative matrix factorization (inmf) which assumes a potentially unbounded number of components in Bayesian nmf model. devise an inference scheme based on Gibbs sampling conjunction with Metropolis-Hastings moves that admits cross-dimensional exploration posterior density. The approach can effectively establish model order for at less computational cost than existing approaches such as thermodynamic integration and reversible jump Markov chain Monte Carlo schemes. On synthetic real data we demonstrate success (inmf).

参考文章(28)
Morten Mørup, Lars Kai Hansen, Sidse M. Arnfred, ERPWAVELAB a toolbox for multi-channel analysis of time-frequency transformed event related potentials. Journal of Neuroscience Methods. ,vol. 161, pp. 361- 368 ,(2007) , 10.1016/J.JNEUMETH.2006.11.008
Cédric Févotte, Vincent Y. F. Tan, Automatic Relevance Determination in Nonnegative Matrix Factorization SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations. ,(2009)
Mikkel N. Schmidt, Morten Mørup, Nonnegative Matrix Factor 2-D Deconvolution for Blind Single Channel Source Separation Independent Component Analysis and Blind Signal Separation. pp. 700- 707 ,(2006) , 10.1007/11679363_87
David Knowles, Zoubin Ghahramani, None, Infinite Sparse Factor Analysis and Infinite Independent Components Analysis Independent Component Analysis and Signal Separation. pp. 381- 388 ,(2007) , 10.1007/978-3-540-74494-8_48
Daniel D. Lee, H. Sebastian Seung, Learning the parts of objects by non-negative matrix factorization Nature. ,vol. 401, pp. 788- 791 ,(1999) , 10.1038/44565
V Paul Pauca, Jon Piper, Robert J Plemmons, None, Nonnegative matrix factorization for spectral data analysis Linear Algebra and its Applications. ,vol. 416, pp. 29- 47 ,(2006) , 10.1016/J.LAA.2005.06.025
Mikkel N. Schmidt, Hans Laurberg, Nonnegative matrix factorization with Gaussian process priors Computational Intelligence and Neuroscience. ,vol. 2008, pp. 3- ,(2008) , 10.1155/2008/361705
Andrew Gelman, Xiao-Li Meng, Simulating normalizing constants: from importance sampling to bridge sampling to path sampling Statistical Science. ,vol. 13, pp. 163- 185 ,(1998) , 10.1214/SS/1028905934
Siddhartha Chib, Marginal Likelihood from the Gibbs Output Journal of the American Statistical Association. ,vol. 90, pp. 1313- 1321 ,(1995) , 10.1080/01621459.1995.10476635
Eric Gaussier, Cyril Goutte, Relation between PLSA and NMF and implications international acm sigir conference on research and development in information retrieval. pp. 601- 602 ,(2005) , 10.1145/1076034.1076148