Symmetry classification of quasi-linear PDE’s containing arbitrary functions

作者: Giampaolo Cicogna

DOI: 10.1007/S11071-007-9212-7

关键词:

摘要: We consider the problem of performing preliminary “symmetry classification” a class quasi-linear PDE’s containing one or more arbitrary functions: we provide an easy condition involving these functions in order that nontrivial Lie point symmetries be admitted, and “geometrical” characterization relevant system equations determining symmetries. Two detailed examples will elucidate idea procedure: first concerns nonlinear Laplace-type equation, second generalization equation (the Grad–Schluter–Shafranov equation) which is used magnetohydrodynamics.

参考文章(25)
V. N. Gusyatnikova, A. V. Samokhin, V. S. Titov, A. M. Vinogradov, V. A. Yumaguzhin, Symmetries and conservation laws of Kadomtsev-Pogutse equations Acta Applicandae Mathematicae. ,vol. 15, pp. 23- 64 ,(1989) , 10.1007/978-94-009-1948-8_2
Stephen C. Anco, George W. Bluman, Symmetry and Integration Methods for Differential Equations ,(2002)
Arthemy V. Kiselev, On the Geometry of Liouville Equation: Symmetries, Conservation Laws, and Bäcklund Transformations Acta Applicandae Mathematicae. ,vol. 72, pp. 33- 49 ,(2002) , 10.1023/A:1015266305221
Roman O Popovych, Nataliya M Ivanova, New results on group classification of nonlinear diffusion–convection equations Journal of Physics A. ,vol. 37, pp. 7547- 7565 ,(2004) , 10.1088/0305-4470/37/30/011
Giampaolo Cicogna, Francesco Ceccherini, Francesco Pegoraro, Applications of Symmetry Methods to the Theory of Plasma Physics Symmetry, Integrability and Geometry: Methods and Applications. ,vol. 2, pp. 017- ,(2006) , 10.3842/SIGMA.2006.017