Higher-dimensional knotlike topological defects in local non-Abelian topological tensor currents

作者: Yi-shi Duan , Shao-feng Wu , Peng-ming Zhang

DOI: 10.1063/1.2338762

关键词:

摘要: We present the novel topological tensor currents to describe infinitesimal thin higher-dimensional defects in local SO(n) gauge theory. The quantization of and inner structure are obtained. As generalization Nielsen-Olesen U(1) field theory for Nambu string, gauge-invariant Lagrangian motion equation derived. Moreover, closed defects, we study their important configuration, i.e., knotlike structures. Using preimages, construct a series metric independent integrals prove independence. Similar helicity integral characterizing one-dimensional vortex filament, these invariants evaluated generalized linking numbers defects.

参考文章(65)
R. Rajaraman, Solitons and instantons ,(1982)
David Hestenes, Garret Sobczyk, Clifford Algebra to Geometric Calculus The Mathematical Gazette. ,vol. 69, pp. 158- ,(1984) , 10.1007/978-94-009-6292-7
Guang Jia, Libin Fu, Yishi Duan, Topological tensor current of p̃-branes in the φ-mapping theory Journal of Mathematical Physics. ,vol. 41, pp. 4379- 4386 ,(2000) , 10.1063/1.533347
Joel Louis Lebowitz, Cyril Domb, Melville S. Green, Phase Transitions and Critical Phenomena ,(1972)
Philip Warren Anderson, Basic Notions of Condensed Matter Physics ,(1983)
Tony Gherghetta, Mikhail Shaposhnikov, Localizing gravity on a string - like defect in six-dimensions Physical Review Letters. ,vol. 85, pp. 240- 243 ,(2000) , 10.1103/PHYSREVLETT.85.240
Frank Reginald Nunes Nabarro, Theory of crystal dislocations Clarendon Press. ,(1967)
A. Marco Saitta, Paul D. Soper, E. Wasserman, Michael L. Klein, Influence of a knot on the strength of a polymer strand Nature. ,vol. 399, pp. 46- 48 ,(1999) , 10.1038/19935
B. A. Cornell, V. L. B. Braach-Maksvytis, L. G. King, P. D. J. Osman, B. Raguse, L. Wieczorek, R. J. Pace, A biosensor that uses ion-channel switches Nature. ,vol. 387, pp. 580- 583 ,(1997) , 10.1038/42432