Robust computational design and evaluation of peptide vaccines for cellular immunity with application to SARS-CoV-2.

作者: Ge Liu , Brandon Carter , Trenton Bricken , Siddhartha Jain , Mathias Viard

DOI: 10.1101/2020.05.16.088989

关键词:

摘要: We present a combinatorial machine learning method to evaluate and optimize peptide vaccine formulations, we find for SARS-CoV-2 that it provides superior predicted display of viral epitopes by MHC class I II molecules over populations when compared other candidate vaccines. Our is robust idiosyncratic errors in the prediction considers target population HLA haplotype frequencies during optimization. To minimize clinical development time our methods validate vaccines with multiple presentation algorithms increase probability will be effective. an objective function based on likelihood diverse set peptides conditioned distribution expected epitope drift. produce separate formulations loci (HLA-A, HLA-B, HLA-C) (HLA-DP, HLA-DQ, HLA-DR) permit signal sequence cell compartment targeting using nucleic acid platforms. provide 93.21% coverage at least five peptide-HLA hits average individual (≥ 1 99.91%) all perfectly conserved across 4,690 geographically sampled genomes. 90.17% having observed mutation ≤ 0.001. 29 previously published designs evaluation tool requirement per individual, they have maximum 58.51% 71.65% given analysis. open source implementation design (OptiVax), (EvalVax), as well data used efforts.

参考文章(75)
Huynh-Hoa Bui, John Sidney, Kenny Dinh, Scott Southwood, Mark J Newman, Alessandro Sette, Predicting population coverage of T-cell epitope-based diagnostics and vaccines BMC Bioinformatics. ,vol. 7, pp. 153- 153 ,(2006) , 10.1186/1471-2105-7-153
Minghai Zhou, Dongping Xu, Xiaojuan Li, Hongtao Li, Ming Shan, Jiaren Tang, Min Wang, Fu-Sheng Wang, Xiaodong Zhu, Hua Tao, Wei He, Po Tien, George F. Gao, Screening and Identification of Severe Acute Respiratory Syndrome-Associated Coronavirus-Specific CTL Epitopes Journal of Immunology. ,vol. 177, pp. 2138- 2145 ,(2006) , 10.4049/JIMMUNOL.177.4.2138
Huabiao Chen, Jinlin Hou, Xiaodong Jiang, Shiwu Ma, Minjie Meng, Baomei Wang, Minghui Zhang, Mingxia Zhang, Xiaoping Tang, Fuchun Zhang, Tao Wan, Nan Li, Yizhi Yu, Hongbo Hu, Ruifu Yang, Wei He, Xiaoning Wang, Xuetao Cao, Response of Memory CD8+ T Cells to Severe Acute Respiratory Syndrome (SARS) Coronavirus in Recovered SARS Patients and Healthy Individuals Journal of Immunology. ,vol. 175, pp. 591- 598 ,(2005) , 10.4049/JIMMUNOL.175.1.591
H. M. Grey, F. V. Chisari, R. Nayersina, M.-F. Del Guercio, C. Oseroff, S. Southwood, L. Yuan, P. Fowler, R. T. Kubo, A. Sette, B. Reherman, A. Vitiello, J. Ruppert, C. J. M. Melief, J. Sidney, R. W. Chesnut, W. M. Kast, The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. Journal of Immunology. ,vol. 153, pp. 5586- 5592 ,(1994)
Ugur Sahin, Katalin Karikó, Özlem Türeci, mRNA-based therapeutics — developing a new class of drugs Nature Reviews Drug Discovery. ,vol. 13, pp. 759- 780 ,(2014) , 10.1038/NRD4278
Sietske Rosendahl Huber, Josine van Beek, Jørgen de Jonge, Willem Luytjes, Debbie van Baarle, T cell responses to viral infections - opportunities for Peptide vaccination. Frontiers in Immunology. ,vol. 5, pp. 171- 171 ,(2014) , 10.3389/FIMMU.2014.00171
Weidang Li, Medha D Joshi, Smita Singhania, Kyle H Ramsey, Ashlesh K Murthy, None, Peptide Vaccine: Progress and Challenges. Vaccine. ,vol. 2, pp. 515- 536 ,(2014) , 10.3390/VACCINES2030515
Roman M. Chicz, Robert G. Urban, William S. Lane, Joan C. Gorga, Lawrence J. Stern, Dario A. A. Vignali, Jack L. Strominger, Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size Nature. ,vol. 358, pp. 764- 768 ,(1992) , 10.1038/358764A0
S. Buus, S.L. Lauemøller, P. Worning, C. Kesmir, T. Frimurer, S. Corbet, A. Fomsgaard, J. Hilden, A. Holm, S. Brunak, Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach Tissue Antigens. ,vol. 62, pp. 378- 384 ,(2003) , 10.1034/J.1399-0039.2003.00112.X