EXACT AND APPROXIMATE PROBABILITY VALUES FOR THE TERPSTRA-JONCKHEERE TEST AGAINST ORDERED ALTERNATIVES

作者: Kenneth J. Berry , Paul W. Mielke

DOI: 10.2466/PMS.1997.85.1.107

关键词:

摘要:

参考文章(9)
Frank Wilcoxon, Individual Comparisons by Ranking Methods Springer Series in Statistics. ,vol. 1, pp. 196- 202 ,(1992) , 10.1007/978-1-4612-4380-9_16
H. B. Mann, D. R. Whitney, On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other Annals of Mathematical Statistics. ,vol. 18, pp. 50- 60 ,(1947) , 10.1214/AOMS/1177730491
Ajit K Thakur, A FORTRAN program to perform the nonparametric Terpstra-Jonckheere test. Computer Programs in Biomedicine. ,vol. 18, pp. 235- 240 ,(1984) , 10.1016/0010-468X(84)90054-0
Robert E. Odeh, On Jonckheere's k-Sample Test Against Ordered Alternatives Technometrics. ,vol. 13, pp. 912- 918 ,(1971) , 10.1080/00401706.1971.10488867
R. W. Potter, G. W. Sturm, The Power of Jonckheere's Test The American Statistician. ,vol. 35, pp. 249- 250 ,(1981) , 10.1080/00031305.1981.10479366
A. R. JONCKHEERE, A DISTRIBUTION-FREE k-SAMPLE TEST AGAINST ORDERED ALTERNATIVES Biometrika. ,vol. 41, pp. 133- 145 ,(1954) , 10.1093/BIOMET/41.1-2.133
Kenneth J. Berry, Enumeration of All Permutations of Multi‐Sets with Fixed Repetition Numbers Journal of The Royal Statistical Society Series C-applied Statistics. ,vol. 31, pp. 169- 173 ,(1982) , 10.2307/2347984