A sequential LCP method for bilevel linear programming

作者: J. J. Júdice , A. M. Faustino

DOI: 10.1007/BF02098174

关键词:

摘要: … This linear program is solved by a modification of the Phase 1 with a single artificial variable [131. This modified procedure is described in [9] and consists of minimizing the variable z 0 …

参考文章(10)
Faiz A. Al-Khayyal, An implicit enumeration procedure for the general linear complementarity problem Mathematical Programming Studies. ,vol. 31, pp. 1- 20 ,(1987) , 10.1007/BFB0121176
Charles Eugene Blair, David E. Boyce, Omar Ben-Ayed, SOLVING A REAL WORLD HIGHWAY NETWORK DESIGN PROBLEM USING BILEVEL LINEAR PROGRAMMING [Urbana, Ill.] : College of Commerce and Business Administration, University of Illinois at Urbana-Champaign,. ,(1988)
P. Marcotte, Network design problem with congestion effects: A case of bilevel programming Mathematical Programming. ,vol. 34, pp. 142- 162 ,(1986) , 10.1007/BF01580580
D. J. White, G. Anandalingam, A penalty function approach for solving bi-level linear programs Journal of Global Optimization. ,vol. 3, pp. 397- 419 ,(1993) , 10.1007/BF01096412
Jonathan F. Bard, James T. Moore, A Branch and Bound Algorithm for the Bilevel Programming Problem Siam Journal on Scientific and Statistical Computing. ,vol. 11, pp. 281- 292 ,(1990) , 10.1137/0911017
J.J. Júdice, A.M. Faustino, An experimental investigation of enumerative methods for the linear complementarity problem Computers & Operations Research. ,vol. 15, pp. 417- 426 ,(1988) , 10.1016/0305-0548(88)90058-5
Robert G. Bland, New Finite Pivoting Rules for the Simplex Method Mathematics of Operations Research. ,vol. 2, pp. 103- 107 ,(1977) , 10.1287/MOOR.2.2.103
Wayne F. Bialas, Mark H. Karwan, Two-Level Linear Programming Management Science. ,vol. 30, pp. 1004- 1020 ,(1984) , 10.1287/MNSC.30.8.1004