Infinite dimensional lie algebras in conformal QFT models

作者: I. T. Todorov

DOI: 10.1007/3540171630_96

关键词:

摘要: The “minimal theories” of critical behaviour in two dimensions Belavin, Polyakov and Zamolodchikov are reviewed. Conformally invariant operator product expansions (OPEs) written down terms composite quasiprimary fields.

参考文章(68)
Ivan Todorov Todorov, Conformal Description of Spinning Particles ,(1986)
Mihail C Mintchev, Valentina B Petkova, Ivan T Todorov, Conformal invariance in quantum field theory ,(1978)
Victor G. Kac, Minoru Wakimoto, Unitarizable highest weight representations of the Virasoro, Neveu-Schwarz and Ramond algebras Conformal Groups and Related Symmetries Physical Results and Mathematical Background. ,vol. 261, pp. 345- 371 ,(1986) , 10.1007/3540171630_93
S. Ferrara, A. F. Grillo, R. Gatto, Conformal algebra in two space-time dimensions and the thirring model Nuovo Cimento Della Societa Italiana Di Fisica A-nuclei Particles and Fields. ,vol. 12, pp. 959- 968 ,(1972) , 10.1007/BF02747859
Arthur Jaffe, Book Review: Introduction to axiomatic quantum field theory Bulletin of the American Mathematical Society. ,vol. 83, pp. 349- 352 ,(1977) , 10.1090/S0002-9904-1977-14261-4
N. N. Bogolubov, Introduction to axiomatic quantum field theory W. A. Benjamin, Inc., Reading, MA. ,(1975)
Irving Ezra Segal, Mathematical cosmology and extragalactic astronomy Pure and Applied Mathematics. A Series of Monographs and Textbooks. ,(1976)
J.-L. Gervais, A. Neveu, Non-standard 2D critical statistical models from Liouville theory Nuclear Physics. ,vol. 257, pp. 59- 76 ,(1985) , 10.1016/0550-3213(85)90336-0