Semi-supervised feature selection for gender classification

作者: Jing Wu , William A. P. Smith , Edwin R. Hancock

DOI: 10.1007/978-3-642-12304-7_3

关键词:

摘要: We apply a semi-supervised learning method to perform gender determination. The aim is select the most discriminating feature components from eigen-feature representation of faces. By making use information provided by both labeled and unlabeled data, we successfully reduce size data set required for selection, improve classification accuracy. Instead using 2D brightness images, 2.5D facial needle-maps which reveal more directly shape information. Principal geodesic analysis (PGA), generalization principal component (PCA) residing in Euclidean space on manifold, used obtain needle-maps. In our experiments, achieve 90.50% accuracy when 50% are labeled. This performance demonstrates effectiveness this small set, feasibility

参考文章(25)
Josef Kittler, Pierre A. Devijver, Pattern recognition : a statistical approach Prentice/Hall International. ,(1982)
AM Martinez, R Benavente, The AR face database CVC Technical Report24. ,vol. 24, ,(1998)
Jing Wu, W. A. P. Smith, E. R. Hancock, Learning Mixture Models for Gender Classification Based on Facial Surface Normals iberian conference on pattern recognition and image analysis. pp. 39- 46 ,(2007) , 10.1007/978-3-540-72847-4_7
Lawrence Sirovich, Turbulence and the dynamics of coherent structures. I. Coherent structures Quarterly of Applied Mathematics. ,vol. 45, pp. 561- 571 ,(1987) , 10.1090/QAM/910462
Zehang Sun, G. Bebis, Xiaojing Yuan, S.J. Louis, Genetic feature subset selection for gender classification: a comparison study workshop on applications of computer vision. pp. 165- 170 ,(2002) , 10.1109/ACV.2002.1182176
A. J. O’Toole, K. A. Deffenbacher, D. Valentin, H. Abdi, Low-dimensional representation of faces in higher dimensions of the face space Journal of the Optical Society of America A. ,vol. 10, pp. 405- 411 ,(1993) , 10.1364/JOSAA.10.000405
Shumeet Baluja, Henry A. Rowley, Boosting sex identification performance innovative applications of artificial intelligence. ,vol. 71, pp. 1508- 1513 ,(2005) , 10.1007/S11263-006-8910-9
William A. P. Smith, Edwin R. Hancock, Facial Shape-from-shading and Recognition Using Principal Geodesic Analysis and Robust Statistics International Journal of Computer Vision. ,vol. 76, pp. 71- 91 ,(2008) , 10.1007/S11263-007-0074-8