A real time forecasting tool for dynamic travel time from clustered time series

作者: A. Ladino , A.Y. Kibangou , C. Canudas de Wit , H. Fourati

DOI: 10.1016/J.TRC.2017.05.002

关键词:

摘要: This paper addresses the problem of dynamic travel time (DT T) forecasting within highway traffic networks using speed measurements. Definitions, computational details and properties in construction DT T are provided. is dynamically clustered a K-means algorithm then information on level trend centroid clusters used to devise predictor computationally simple be implemented. To take into account lack cluster assignment for new predicted values, weighted average fusion based similarity measurement proposed combine predictions each model. The deployed real application performance evaluated data from South Ring Grenoble city France.

参考文章(35)
Dongkuan Xu, Yingjie Tian, A Comprehensive Survey of Clustering Algorithms Annals of Data Science. ,vol. 2, pp. 165- 193 ,(2015) , 10.1007/S40745-015-0040-1
Luis Leon Ojeda, Alain Y. Kibangou, Carlos Canudas de Wit, Online dynamic travel time prediction using speed and flow measurements european control conference. pp. 4045- 4050 ,(2013) , 10.23919/ECC.2013.6669763
Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Victor Lempitsky, Domain-Adversarial Training of Neural Networks Domain Adaptation in Computer Vision Applications. ,vol. 17, pp. 189- 209 ,(2017) , 10.1007/978-3-319-58347-1_10
Filmon G. Habtemichael, Mecit Cetin, Short-term traffic flow rate forecasting based on identifying similar traffic patterns Transportation Research Part C-emerging Technologies. ,vol. 66, pp. 61- 78 ,(2016) , 10.1016/J.TRC.2015.08.017
Markos Papageorgiou, Ioannis Papamichail, Albert Messmer, Yibing Wang, Traffic Simulation with METANET Springer, New York, NY. pp. 399- 430 ,(2010) , 10.1007/978-1-4419-6142-6_11
Evelyn Fix, J. L. Hodges, Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties International Statistical Review. ,vol. 57, pp. 238- ,(1989) , 10.2307/1403797
Cheng-Ju Wu, Thomas Schreiter, Roberto Horowitz, Multiple-clustering ARMAX-based predictor and its application to freeway traffic flow prediction advances in computing and communications. pp. 4397- 4403 ,(2014) , 10.1109/ACC.2014.6859388
D T Pham, S S Dimov, C D Nguyen, Selection of K in K-means clustering: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. ,vol. 219, pp. 103- 119 ,(2005) , 10.1243/095440605X8298
Anil K. Jain, Data clustering: 50 years beyond K-means international conference on pattern recognition. ,vol. 31, pp. 651- 666 ,(2010) , 10.1016/J.PATREC.2009.09.011