Variable and subset selection in PLS regression

作者: Agnar Höskuldsson

DOI: 10.1016/S0169-7439(00)00113-1

关键词:

摘要: The purpose of this paper is to present some useful methods for introductory analysis variables and subsets in relation PLS regression. We here that are efficient finding the appropriate or subset use general conclusion variable selection important successful chemometric data. An aspect results presented lack can spoil regression, cross-validation measures using a test set show larger variation, when we different X, than obtained by methods. also an approach orthogonal scatter correction. procedures comparisons applied industrial

参考文章(7)
Jonas Sjöblom, Olof Svensson, Mats Josefson, Hans Kullberg, Svante Wold, An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra Chemometrics and Intelligent Laboratory Systems. ,vol. 44, pp. 229- 244 ,(1998) , 10.1016/S0169-7439(98)00112-9
L. Nørgaard, A. Saudland, J. Wagner, J. P. Nielsen, L. Munck, S. B. Engelsen, Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy Applied Spectroscopy. ,vol. 54, pp. 413- 419 ,(2000) , 10.1366/0003702001949500
RONALD S. HALINSKI, LEONARD S. FELDT, THE SELECTION OF VARIABLES IN MULTIPLE REGRESSION ANALYSIS Journal of Educational Measurement. ,vol. 7, pp. 151- 157 ,(1970) , 10.1111/J.1745-3984.1970.TB00709.X
Tom Fearn, On orthogonal signal correction Chemometrics and Intelligent Laboratory Systems. ,vol. 50, pp. 47- 52 ,(2000) , 10.1016/S0169-7439(99)00045-3
Svante Wold, Henrik Antti, Fredrik Lindgren, Jerker Öhman, Orthogonal signal correction of near-infrared spectra Chemometrics and Intelligent Laboratory Systems. ,vol. 44, pp. 175- 185 ,(1998) , 10.1016/S0169-7439(98)00109-9
Mary L. Thompson, Selection of Variables in Multiple Regression: Part I. A Review and Evaluation International Statistical Review. ,vol. 46, pp. 1- ,(1978) , 10.2307/1402505