Multirole Population of Automated Helmsmen in Neuroevolutionary Ship Handling

作者: Miroslaw Lacki

DOI:

关键词:

摘要: This paper presents the proposal of advanced intelligent system able to simulate and demonstrate learning behavior helmsmen in ship maneuvering. Simulated are treated as individuals population, which through environmental sensing learn themselves safely navigate on restricted waters. Individuals being organized groups specialized for particular task maneuvering process. Neuroevolutionary algorithms, develop artificial neural networks evolutionary operations, used this system.

参考文章(12)
W. Filipowicz, J. Szłapczyńska, M. Łącki, Multicriteria decision support for vessels routing Archives of Transport. pp. 71- 83 ,(2005)
Hans-Georg Beyer, Hans-Paul Schwefel, Evolution strategies –A comprehensive introduction Natural Computing. ,vol. 1, pp. 3- 52 ,(2002) , 10.1023/A:1015059928466
T.-C. Chu, Y.-C. Lin, A Fuzzy TOPSIS Method for Robot Selection The International Journal of Advanced Manufacturing Technology. ,vol. 21, pp. 284- 290 ,(2003) , 10.1007/S001700300033
K.O. Stanley, R. Miikkulainen, Efficient evolution of neural network topologies congress on evolutionary computation. ,vol. 2, pp. 1757- 1762 ,(2002) , 10.1109/CEC.2002.1004508
A.G. Barto, R.S. Sutton, Reinforcement Learning: An Introduction ,(1988)
Richard S Sutton, Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding neural information processing systems. ,vol. 8, pp. 1038- 1044 ,(1995)
Risto Miikkulainen, Kenneth O. Stanley, Efficient Reinforcement Learning Through Evolving Neural Network Topologies genetic and evolutionary computation conference. pp. 569- 577 ,(2002)
Gerald Tesauro, Temporal difference learning and TD-Gammon Communications of the ACM. ,vol. 38, pp. 58- 68 ,(1995) , 10.1145/203330.203343