On the solvability of degenerate stochastic partial differential equations in Sobolev spaces

作者: Máté Gerencsér , István Gyöngy , Nicolai Krylov

DOI: 10.1007/S40072-014-0042-6

关键词:

摘要: Systems of parabolic, possibly degenerate parabolic SPDEs are considered. Existence and uniqueness established in Sobolev spaces. Similar results obtained for a class equations generalizing the deterministic first order symmetric hyperbolic systems.

参考文章(28)
István Gyöngy, Nicolai Krylov, On the Rate of Convergence of Splitting-up Approximations for SPDEs Birkhäuser, Basel. pp. 301- 321 ,(2003) , 10.1007/978-3-0348-8069-5_17
E. V. Radkevich, O. A. Oleĭnik, Paul C. Fife, Second-Order Equations With Nonnegative Characteristic Form ,(1973)
Giuseppe Da Prato, Jerzy Zabczyk, Stochastic Equations in Infinite Dimensions ,(1992)
A. A. Ruzmaikin, S. A. Molchanov, D. D. Sokolov, Short-correlated random flow as a fast dynamo Soviet physics. Doklady. ,vol. 32, pp. 569- ,(1987)
Lee Kijung, Kim Kyeong-Hun, A $W^1_2$-Theory of Stochastic Partial Differential Systems of Divergence Type on $C^1$ Domains Electronic Journal of Probability. ,vol. 16, pp. 1296- 1317 ,(2011) , 10.1214/EJP.V16-913
Henry Keith Moffatt, Magnetic field generation in electrically conducting fluids Cambridge Monographs on Mechanics and Applied Mathematics. ,(1978)
István Gyöngy, Nicolai Krylov, Expansion of solutions of parameterized equations and acceleration of numerical methods Illinois Journal of Mathematics. ,vol. 50, pp. 473- 514 ,(2006) , 10.1215/IJM/1258059483
N. Krylov, SPDEs in $L_q( ( 0,\tau ] , L_p)$ Spaces Electronic Journal of Probability. ,vol. 5, pp. 1- 29 ,(2000) , 10.1214/EJP.V5-69
István Gyöngy, On stochastic finite difference schemes Stochastic Partial Differential Equations: Analysis and Computations. ,vol. 2, pp. 539- 583 ,(2014) , 10.1007/S40072-014-0039-1
Kyeong-Hun Kim, $L_p$-Estimates for SPDE with Discontinuous Coefficients in Domains Electronic Journal of Probability. ,vol. 10, pp. 1- 20 ,(2005) , 10.1214/EJP.V10-234