Microarray Data Mining with Evolutionary Computation

作者: Gary B. Fogel

DOI: 10.1007/3-540-32358-9_11

关键词:

摘要: The application of evolutionary algorithms to data mining in the area microarray analysis is rapidly gaining interest community. large number gene expressions coupled with over a time course, provides an immense space possible relations. Some small portion this contains information that extreme value modern biomedicine terms proper diagnosis and treatment many diseases. Classical methods optimization tend provide solutions are limited worth simply because their typical entrapment locally optimal solutions. Escape from these local optima cannot be guaranteed use algorithms, but possibility, literature above demonstrates increased performance possible. In light overabundance expression data, simulated evolution towards development better predictive models holds promising future.

参考文章(57)
Shin Ando, Hitoshi Iba, Artificial immune system for classification of cancer Lecture Notes in Computer Science. pp. 1- 10 ,(2003) , 10.1007/3-540-36605-9_1
Michael C O'Neill, Li Song, Neural network analysis of lymphoma microarray data: prognosis and diagnosis near-perfect BMC Bioinformatics. ,vol. 4, pp. 13- 13 ,(2003) , 10.1186/1471-2105-4-13
P. Werbos, Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences Ph. D. dissertation, Harvard University. ,(1974)
Javed Khan, Jun S Wei, Markus Ringner, Lao H Saal, Marc Ladanyi, Frank Westermann, Frank Berthold, Manfred Schwab, Cristina R Antonescu, Carsten Peterson, Paul S Meltzer, None, Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks Nature Medicine. ,vol. 7, pp. 673- 679 ,(2001) , 10.1038/89044
Taizo Hanai, Hiroyuki Honda, Tatsuya Ando, Takeshi Kobayashi, Prognostic Prediction of Lymphoma by Gene Expression Profiling Using FNN Genome Informatics. ,vol. 12, pp. 247- 248 ,(2001) , 10.11234/GI1990.12.247
Amanda Clare, Ross Donald King, How well do we understand the clusters found in microarray data in Silico Biology. ,vol. 2, pp. 511- 522 ,(2002)
Markus Ringnér, Carsten Peterson, Microarray-based cancer diagnosis with artificial neural networks. BioTechniques. ,vol. 34, pp. 30- 30 ,(2003) , 10.2144/MAR03RINGNER
Markus Ringnér, Patrik Edén, Peter Johansson, Classification of Expression Patterns Using Artificial Neural Networks A Practical Approach to Microarray Data Analysis; pp 201-215 (2003). pp. 201- 215 ,(2003) , 10.1007/0-306-47815-3_11
Paul A. Rejto, Christopher J. Sherman, David R. Fogel, Lawrence J. Fogel, Stephan T. Freer, Daniel K. Gehlhaar, Gennady M. Verkhivker, Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming Chemistry & Biology. ,vol. 2, pp. 317- 324 ,(1995) , 10.1016/1074-5521(95)90050-0