The Universality of vacuum Einstein equations with cosmological constant

作者: Mauro Francaviglia , Igor Volovich , Marco Ferraris

DOI: 10.1088/0264-9381/11/6/015

关键词:

摘要: It is shown that for a wide class of analytic Lagrangians, which depend only on the scalar curvature metric and connection, application so called `Palatini formalism', i.e. treating connection as independent variables, leads to `universal' equations. If dimension n spacetime greater than two these universal equations are vacuum Einstein with cosmological constant generic Lagrangian suitably replaced by other at degenerate points. We show degeneracy takes place in particular conformally invariant Lagrangians we prove their solutions equivalent Einstein's For two-dimensional spacetimes find instead equation always curvature; this case Weyl containing Levi-Civita an additional vector field ensuing from conformal invariance. As example, investigate detail some polynomial discuss

参考文章(33)
Arthur Eddington, The mathematical theory of relativity ,(1924)
J. R. Ray, Palatini variational principle Il Nuovo Cimento B Series 11. ,vol. 25, pp. 706- 710 ,(1975) , 10.1007/BF02724746
M Ferraris, M Francaviglia, G Magnano, Remarks on the physical metric in non-linear theories of gravitation Classical and Quantum Gravity. ,vol. 7, pp. 261- 263 ,(1990) , 10.1088/0264-9381/7/2/019
Ryoyu Utiyama, Bryce S. DeWitt, Renormalization of a Classical Gravitational Field Interacting with Quantized Matter Fields Journal of Mathematical Physics. ,vol. 3, pp. 608- 618 ,(1962) , 10.1063/1.1724264
Victor H. Hamity, Daniel E. Barraco, First order formalism of f(R) gravity General Relativity and Gravitation. ,vol. 25, pp. 461- 471 ,(1993) , 10.1007/BF00756965
C H Brans, Nonlinear Lagrangians and the significance of the metric Classical and Quantum Gravity. ,vol. 5, ,(1988) , 10.1088/0264-9381/5/12/001
M.O Katanaev, I.V Volovich, Two-dimensional gravity with dynamical torsion and strings Annals of Physics. ,vol. 197, pp. 1- 32 ,(1990) , 10.1016/0003-4916(90)90200-8
G. Magnano, M. Ferraris, M. Francaviglia, Nonlinear gravitational Lagrangians General Relativity and Gravitation. ,vol. 19, pp. 465- 479 ,(1987) , 10.1007/BF00760651
Donald E. Neville, Experimental Bounds on the Coupling Strength of Torsion Potentials Physical Review D. ,vol. 21, pp. 2075- 2080 ,(1980) , 10.1103/PHYSREVD.21.2075