Gradient methods and conic least-squares problems

作者: Yu Xia

DOI: 10.1080/10556788.2014.990452

关键词:

摘要: This paper presents two reformulations of the dual constrained least-squares problem over convex cones. In addition, it extends Nesterov's excessive gap method 1 [Excessive technique in nonsmooth minimization, SIAM J. Optim. 161 2005, pp. 235–249 electronic] to more general problems. The conic is then solved by applying resulting modified method, or smooth [Smooth minimization non-smooth functions, Math. Program. 1031, Ser. A 127–152], 2 electronic], reformulations. Numerical experiments show that this approach obtains relatively accurate solutions for large-scale problems using less CPU time than interior-point method-based state-of-art software do and these on instances possibly with degeneracy [F. Alizadeh, J.-P.A. Haeberly, M.L. Overton, Complementarity nondegeneracy semidefinite programming, 772, B 1997, 111–128]. easily related quadratic programs.

参考文章(36)
Jia-Wang Nie, Ya-Xiang Yuan, A Predictor–Corrector Algorithm for QSDP Combining Dikin-Type and Newton Centering Steps Annals of Operations Research. ,vol. 103, pp. 115- 133 ,(2001) , 10.1023/A:1012994820412
Didier Henrion, Jérôme Malick, Projection methods in conic optimization arXiv: Optimization and Control. pp. 565- 600 ,(2012) , 10.1007/978-1-4614-0769-0_20
I. Vincze, R. E. Barlow, D. J. Bartholomew, J. M. Bremner, H. D. Brunk, Statistical Inference under Order Restrictions (The Theory and Application of Isotonic Regression) International Statistical Review / Revue Internationale de Statistique. ,vol. 41, pp. 395- ,(1973) , 10.2307/1402630
Leonid Faybusovich, Semidefinite Programming: A Path-Following Algorithm for a Linear--Quadratic Functional Siam Journal on Optimization. ,vol. 6, pp. 1007- 1024 ,(1996) , 10.1137/S1052623494270741
H. Hu, Positive definite constrained least-squares estimation of matrices Linear Algebra and its Applications. ,vol. 229, pp. 167- 174 ,(1995) , 10.1016/0024-3795(94)00024-8
R. Penrose, A Generalized inverse for matrices Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 51, pp. 406- 413 ,(1955) , 10.1017/S0305004100030401
Farid Alizadeh, Jean-Pierre A. Haeberly, Michael L. Overton, Complementarity and nondegeneracy in semidefinite programming Mathematical Programming. ,vol. 77, pp. 111- 128 ,(1997) , 10.1007/BF02614432
Jérôme Malick, A Dual Approach to Semidefinite Least-Squares Problems SIAM Journal on Matrix Analysis and Applications. ,vol. 26, pp. 272- 284 ,(2005) , 10.1137/S0895479802413856
J. M. Borwein, H. Wolkowicz, A simple constraint qualification in infinite dimensional programming Mathematical Programming. ,vol. 35, pp. 83- 96 ,(1986) , 10.1007/BF01589443