Variational Calculus on Lie Groups

作者: Gregory S Chirikjian , Gregory S Chirikjian

DOI: 10.1007/978-0-8176-4944-9_4

关键词:

摘要: The calculus of variations is concerned with finding extremal paths functionals in analogy the way that classical seeks to find critical points functions. Variational plays a central role mechanics, connecting “Principle Least Action” and Lagrange’s equations motion (also called Euler– Lagrange equations). In setting, generalized coordinates are introduced describe geometric configuration mechanical system. this chapter, variational reviewed extended systems on Lie groups. Of course, introduction such as Euler angles orientation rigid body can be used formulate problems at expense introducing singularities. However, it possible groups without coordinates. This results Euler’Poincare equations.

参考文章(51)
C. Carath�odory, Untersuchungen über die Grundlagen der Thermodynamik Mathematische Annalen. ,vol. 67, pp. 355- 386 ,(1909) , 10.1007/BF01450409
James D. Turner, John L. Junkins, Optimal spacecraft rotational maneuvers ,(1986)
Der-Chen Chang, Ovidiu Calin, Sub-Riemannian Geometry: General Theory and Examples ,(2009)
Robert Hermann, Geometry, physics, and systems ,(1973)
Maria Luisa Petit, Dynamic optimization. The calculus of variations and optimal control in economics and management International Review of Economics & Finance. ,vol. 3, pp. 245- 247 ,(1994) , 10.1016/1059-0560(94)90037-X
E. Sachs, W. A. Gruver, Algorithmic methods in optimal control ,(1981)
L. Saloff-Coste, T. Coulhon, Nicholas T. Varopoulos, Analysis and Geometry on Groups ,(1993)