Modeling the Primary Drainage Curve of Prefractal Porous Media

作者: E. Perfect

DOI: 10.2136/VZJ2005.0012

关键词:

摘要: during monotonic wetting. Assuming continuous drainage occurs from complete saturation to oven dryness Fractal models for the soil water retention curve have largely ig

参考文章(40)
R.D. Braddock, J.-Y. Parlange, H. Lee, Application of a Soil Water Hysteresis Model to Simple Water Retention Curves Transport in Porous Media. ,vol. 44, pp. 407- 420 ,(2001) , 10.1023/A:1010792008870
Royal Harvard Brooks, A. T. Corey, Hydraulic properties of porous media Colorado State University. Libraries. ,(1963)
Daniel Hillel, Environmental soil physics ,(1998)
Francoise Brochard-Wyart Pierre-Gilles de Gennes (David Quere), Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves ,(2003)
J. C. Parker, R. J. Lenhard, A model for hysteretic constitutive relations governing multiphase flow: 1. Saturation-pressure relations Water Resources Research. ,vol. 23, pp. 2187- 2196 ,(1987) , 10.1029/WR023I012P02187
Scott W. Tyler, Stephen W. Wheatcraft, Fractal processes in soil water retention Water Resources Research. ,vol. 26, pp. 1047- 1054 ,(1990) , 10.1029/WR026I005P01047
AN Anderson, AB Mcbratney, Soil aggregates as mass fractals Soil Research. ,vol. 33, pp. 757- 772 ,(1995) , 10.1071/SR9950757
P. VIAENE, H. VEREECKEN, J. DIELS, J. FEYEN, A statistical analysis of six hysteresis models for the moisture retention characteristic Soil Science. ,vol. 157, pp. 345- 355 ,(1994) , 10.1097/00010694-199406000-00003
Michael C. Sukop, Edmund Perfect, Nigel R. A. Bird, Water retention of prefractal porous media generated with the homogeneous and heterogeneous algorithms Water Resources Research. ,vol. 37, pp. 2631- 2636 ,(2001) , 10.1029/2000WR000097
A POULOVASSILIS, E C CHILDS, THE HYSTERESIS OF PORE WATER: THE NON-INDEPENDENCE OF DOMAINS Soil Science. ,vol. 112, pp. 301- 312 ,(1971) , 10.1097/00010694-197111000-00002