Reaction Kinetics for Diffusion Controlled Aggregation

作者: F. Leyvraz

DOI: 10.1007/978-94-009-3005-6_4

关键词:

摘要: Irreversible coagulation (or aggregation) processes are described first by equations, for which a scaling theory is described. It then argued that the range of validity this description does not necessarily include case where diffusion rate-limiting step. A simplified model to simulate latter and shown deviate from predictions rate equations if space dimension d spectral s fractal substrates) less than or equal two. Finally, some open problems in treatment more realistic models discussed.

参考文章(28)
James D. Klett, Hans R. Pruppacher, Microphysics of Clouds and Precipitation ,(1980)
Paul J. Flory, Principles of polymer chemistry ,(1953)
K. Kang, S. Redner, P. Meakin, F. Leyvraz, Long-time crossover phenomena in coagulation kinetics Physical Review A. ,vol. 33, pp. 1171- 1182 ,(1986) , 10.1103/PHYSREVA.33.1171
M. Kolb, R. Botet, R. Jullien, Scaling of Kinetically Growing Clusters Physical Review Letters. ,vol. 51, pp. 1123- 1126 ,(1983) , 10.1103/PHYSREVLETT.51.1123
Dale W. Schaefer, James E. Martin, Pierre Wiltzius, David S. Cannell, Fractal geometry of colloidal aggregates Physical Review Letters. ,vol. 52, pp. 2371- 2374 ,(1984) , 10.1103/PHYSREVLETT.52.2371
Walter H. Stockmayer, Theory of Molecular Size Distribution and Gel Formation in Branched‐Chain Polymers The Journal of Chemical Physics. ,vol. 11, pp. 45- 55 ,(1943) , 10.1063/1.1723803
P. G. J. van Dongen, M. H. Ernst, On the occurrence of a gelation transition in Smoluchowski's coagulation equation Journal of Statistical Physics. ,vol. 44, pp. 785- 792 ,(1986) , 10.1007/BF01011907