The Next Era: Deep Learning in Pharmaceutical Research.

作者: Sean Ekins

DOI: 10.1007/S11095-016-2029-7

关键词:

摘要: … Large companies such as Baidu, Google, Facebook etc. all use deep learning in facial … by artificial intelligence software that use machine learning (2) that can in many ways now predict …

参考文章(87)
Frank Burden, Dave Winkler, Bayesian regularization of neural networks. Methods of Molecular Biology. ,vol. 458, pp. 25- 44 ,(2008) , 10.1007/978-1-60327-101-1_3
Alex M. Clark, Sean Ekins, Open Source Bayesian Models. 2. Mining a "Big Dataset" To Create and Validate Models with ChEMBL. Journal of Chemical Information and Modeling. ,vol. 55, pp. 1246- 1260 ,(2015) , 10.1021/ACS.JCIM.5B00144
Hiromi Baba, Jun-ichi Takahara, Fumiyoshi Yamashita, Mitsuru Hashida, Modeling and Prediction of Solvent Effect on Human Skin Permeability using Support Vector Regression and Random Forest Pharmaceutical Research. ,vol. 32, pp. 3604- 3617 ,(2015) , 10.1007/S11095-015-1720-4
Hwan You, Kyungro Lee, Sangwon Lee, Sung Bo Hwang, Kwang-Yon Kim, Kwang-Hwi Cho, Kyoung Tai No, Computational classification models for predicting the interaction of compounds with hepatic organic ion importers Drug Metabolism and Pharmacokinetics. ,vol. 30, pp. 347- 351 ,(2015) , 10.1016/J.DMPK.2015.06.004
Tomomi Hatanaka, Shun Yoshida, Wesam R. Kadhum, Hiroaki Todo, Kenji Sugibayashi, In Silico Estimation of Skin Concentration Following the Dermal Exposure to Chemicals Pharmaceutical Research. ,vol. 32, pp. 3965- 3974 ,(2015) , 10.1007/S11095-015-1756-5
Xin Deng, Jordan Gumm, Suman Karki, Jesse Eickholt, Jianlin Cheng, An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions International Journal of Molecular Sciences. ,vol. 16, pp. 15384- 15404 ,(2015) , 10.3390/IJMS160715384
Sean Ekins, Moses M. Hohman, Barry A. Bunin, Pioneering Use of the Cloud for Development of Collaborative Drug Discovery (CDD) Database John Wiley & Sons, Inc.. pp. 335- 361 ,(2011) , 10.1002/9781118026038.CH21
Tao Zeng, Rongjian Li, Ravi Mukkamala, Jieping Ye, Shuiwang Ji, Deep convolutional neural networks for annotating gene expression patterns in the mouse brain BMC Bioinformatics. ,vol. 16, pp. 147- 147 ,(2015) , 10.1186/S12859-015-0553-9
Sean Ekins, Nadia K. Litterman, Christopher A. Lipinski, Barry A. Bunin, Thermodynamic Proxies to Compensate for Biases in Drug Discovery Methods Pharmaceutical Research. ,vol. 33, pp. 194- 205 ,(2016) , 10.1007/S11095-015-1779-Y
Sai Zhang, Jingtian Zhou, Hailin Hu, Haipeng Gong, Ligong Chen, Chao Cheng, Jianyang Zeng, A deep learning framework for modeling structural features of RNA-binding protein targets Nucleic Acids Research. ,vol. 44, ,(2016) , 10.1093/NAR/GKV1025