Enhanced assumed strain elements and locking in membrane problems

作者: Dietrich Braess

DOI: 10.1016/S0045-7825(98)00037-1

关键词:

摘要: Abstract The assumptions which guarantee convergence of EAS elements first introduced by Simo and Rifai, can be reduced to two postulates. Specifically, the stability condition refers a relaxed an associated Hu-Washizu principle. We investigate problem volume locking membrane problems. Estimates certain type for instance imply Q1-element, are fortunately not present with elements. Finally we verify equivalence concept Hellinger-Reissner method was observed in numerical computations Andelfinger Ramm.

参考文章(12)
J. Tinsley Oden, Leszek F. Demkowicz, Applied functional analysis ,(1996)
K. Arunakirinathar, B.D. Reddy, Further results for enhanced strain methods with isoparametric elements Computer Methods in Applied Mechanics and Engineering. ,vol. 127, pp. 127- 143 ,(1995) , 10.1016/0045-7825(95)00845-0
Robert L. Taylor, Peter J. Beresford, Edward L. Wilson, A non-conforming element for stress analysis International Journal for Numerical Methods in Engineering. ,vol. 10, pp. 1211- 1219 ,(1976) , 10.1002/NME.1620100602
U. Andelfinger, E. Ramm, EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements International Journal for Numerical Methods in Engineering. ,vol. 36, pp. 1311- 1337 ,(1993) , 10.1002/NME.1620360805
M. Bischoff, E. Ramm, D. Braess, A class of equivalent enhanced assumed strain and hybrid stress finite elements Computational Mechanics. ,vol. 22, pp. 443- 449 ,(1999) , 10.1007/S004660050378
Ivo Babuška, Manil Suri, Locking effects in the finite element approximation of elasticity problems Numerische Mathematik. ,vol. 62, pp. 439- 463 ,(1992) , 10.1007/BF01396238
J. C. Simo, M. S. Rifai, A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES International Journal for Numerical Methods in Engineering. ,vol. 29, pp. 1595- 1638 ,(1990) , 10.1002/NME.1620290802
B. D. Reddy, J. C. Simo, Stability and convergence of a class of enhanced strain methods SIAM Journal on Numerical Analysis. ,vol. 32, pp. 1705- 1728 ,(1995) , 10.1137/0732077