Meaningful Multicollinearity Measures

作者: Andrew R. Willan , Donald G. Watts

DOI: 10.1080/00401706.1978.10489694

关键词:

摘要: Problems of multicollinearity in regression analysis are considered and numerical measures established to assess the extent a set data with respect parameter confidence regions tests hypotheses, effective sample size, predictability.

参考文章(17)
M. J. Box, N. R. Draper, Factorial Designs, the |X′X| Criterion, and Some Related Matters Technometrics. ,vol. 13, pp. 731- 742 ,(1971) , 10.1080/00401706.1971.10488845
J. T. Webster, R. F. Gunst, R. L. Mason, Latent Root Regression Analysis Technometrics. ,vol. 16, pp. 513- 522 ,(1974) , 10.1080/00401706.1974.10489232
Arthur E. Hoerl, Robert W. Kennard, Ridge Regression: Applications to Nonorthogonal Problems Technometrics. ,vol. 12, pp. 69- 82 ,(1970) , 10.1080/00401706.1970.10488635
Norman Richard Draper, Harry Smith, Applied Regression Analysis ,(1966)
Arthur E. Hoerl, Robert W. Kennard, Ridge regression: biased estimation for nonorthogonal problems Technometrics. ,vol. 42, pp. 80- 86 ,(2000) , 10.2307/1271436
Donald W. Marquardt, Ronald D. Snee, Ridge Regression in Practice The American Statistician. ,vol. 29, pp. 3- 20 ,(1975) , 10.1080/00031305.1975.10479105
William F. Lott, The optimal set of principal component restrictions on a least-squares regression Communications in Statistics-theory and Methods. ,vol. 2, pp. 449- 464 ,(1973) , 10.1080/03610927308827089
Maurice G. Kendall, A course in multivariate analysis ,(1957)
Robert R. Glauber, Donald Eugene. Farrar, Multicollinearity in Regression Analysis; the Problem Revisited ,(2011)
J. W. Gorman, R. J. Toman, Selection of Variables for Fitting Equations to Data Technometrics. ,vol. 8, pp. 27- 51 ,(1966) , 10.1080/00401706.1966.10490322