Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations

作者: V. V. Belov , A. Yu. Trifanov , A. V. Shapovalov

DOI: 10.1023/A:1014719007121

关键词:

摘要: We use the concept of complex WKB–Maslov method to construct semiclassically concentrated solutions for Hartree-type equations. Formal Cauchy problem this equation that are asymptotic (with respect a small parameter ℏ, ℏ→0) constructed with power-law accuracy O(ℏN/2), where N≥3 is positive integer. The system Hamilton–Ehrenfest equations (for averaged and centered moments) derived in paper plays significant role constructing solutions. In class equations, we an approximate Green's function state nonlinear superposition principle.

参考文章(43)
D. V. Chudnovsky, Infinite component two-dimensional completely integrable systems of KdV type Springer, Berlin, Heidelberg. pp. 71- 84 ,(1982) , 10.1007/BFB0093500
Gustavo Perla Menzala, On a Hartree type equation: Existence of regular solutions Lecture Notes in Mathematics, Berlin Springer Verlag. ,vol. 799, pp. 277- 288 ,(1980) , 10.1007/BFB0089319
Isamu Fukuda, Masayoshi Tsutsumi, On coupled Klein-Gordon-Schrödinger equations, II Journal of Mathematical Analysis and Applications. ,vol. 66, pp. 358- 378 ,(1978) , 10.1016/0022-247X(78)90239-1
Barry Simon, Michael Reed, Methods of Modern Mathematical Physics ,(1972)
Askol'd. Mikhailovich Perelomov, Generalized Coherent States and Their Applications ,(1986)
Elliott H. Lieb, Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation Studies in Applied Mathematics. ,vol. 57, pp. 93- 105 ,(1977) , 10.1002/SAPM197757293
E. Schr�dinger, Der stetige �bergang von der Mikro- zur Makromechanik Die Naturwissenschaften. ,vol. 14, pp. 664- 666 ,(1926) , 10.1007/BF01507634
Walter A Strauss, Nonlinear scattering theory at low energy: Sequel Journal of Functional Analysis. ,vol. 43, pp. 281- 293 ,(1981) , 10.1016/0022-1236(81)90019-7
V. G. Bagrov, V. V. Belov, M. F. Kondrat'eva, The semiclassical approximation in quantum mechanics. A new approach Theoretical and Mathematical Physics. ,vol. 98, pp. 34- 38 ,(1994) , 10.1007/BF01015121
V. V. Belov, M. F. Kondrat'eva, “Classical” equations of motion in quantum mechanics with gauge fields Theoretical and Mathematical Physics. ,vol. 92, pp. 722- 735 ,(1992) , 10.1007/BF01018700