Generalized log-linear models with random effects, with application to smoothing contingency tables

作者: Brent A Coull , Alan Agresti

DOI: 10.1191/1471082X03ST059OA

关键词:

摘要: We define a class of generalized log-linear models with random effects. For vector Poisson or multinomial means m and matrices constants C A, the model has form log Aμ = Xβ + Zu, where β are fixed effects u The contains most standard currently used for categorical data analysis. suggest some new that special cases this useful applications such as smoothing large contingency tables modeling heterogeneity in odds ratios. present examples its use applications. In many cases, maximum likelihood fitting can be handled existing methods software. outline extensions other cases. also summarize several challenges future research, general deriving properties estimates tables.

参考文章(38)
Gerhard Tutz, Wolfgang Hennevogl, Random effects in ordinal regression models Computational Statistics & Data Analysis. ,vol. 22, pp. 537- 557 ,(1996) , 10.1016/0167-9473(96)00004-7
K. S. Chan, Johannes Ledolter, Monte Carlo EM Estimation for Time Series Models Involving Counts Journal of the American Statistical Association. ,vol. 90, pp. 242- 252 ,(1995) , 10.1080/01621459.1995.10476508
Jeffrey S. Simonoff, A Penalty Function Approach to Smoothing Large Sparse Contingency Tables Annals of Statistics. ,vol. 11, pp. 208- 218 ,(1983) , 10.1214/AOS/1176346071
Peter J. Green, Penalized Likelihood for General Semi-Parametric Regression Models. International Statistical Review. ,vol. 55, pp. 245- 259 ,(1987) , 10.2307/1403404
Fernando A. Quintana, Jun S. Liu, Guido E.del Pino, Monte Carlo EM with importance reweighting and its applications in random effects models Computational Statistics & Data Analysis. ,vol. 29, pp. 429- 444 ,(1999) , 10.1016/S0167-9473(98)00075-9
GARRETT M. FITZMAURICE, NAN M. LAIRD, A likelihood-based method for analysing longitudinal binary responses Biometrika. ,vol. 80, pp. 141- 151 ,(1993) , 10.1093/BIOMET/80.1.141
Michael Haber, Maximum likelihood methods for linear and log-linear models in categorical data Computational Statistics & Data Analysis. ,vol. 3, pp. 1- 10 ,(1985) , 10.1016/0167-9473(85)90053-2
Geert Molenberghs, Emmanuel Lesaffre, Marginal modelling of multivariate categorical data. Statistics in Medicine. ,vol. 18, pp. 2237- 2255 ,(1999) , 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2237::AID-SIM252>3.0.CO;2-R