Ordering of Energy Levels in Heisenberg Models and Applications

作者: Bruno Nachtergaele , Shannon Starr

DOI: 10.1007/3-540-34273-7_13

关键词:

摘要: In a recent paper we conjectured that for ferromagnetic Heisenberg models the smallest eigenvalues in invariant subspaces of fixed total spin are monotone decreasing as function and called this property ordering energy levels (FOEL). We have proved conjecture model with arbitrary spins coupling constants on chain. give pedagogical introduction to result also discuss some extensions implications. The latter include relaxation time symmetric simple exclusion processes graph which FOEL can be proved, equals random walk same graph. This equality times is known Aldous' Conjecture.

参考文章(20)
Tetsuji Miwa, Michio Jimbo, Algebraic Analysis of Solvable Lattice Models. ,(1994)
Tom Kennedy, Expansions for Droplet States in the Ferromagnetic XXZ Heisenberg Chain arXiv: Mathematical Physics. ,(2003)
Bruno Nachtergaele, Wolfgang Spitzer, Shannon Starr, Ferromagnetic Ordering of Energy Levels Journal of Statistical Physics. ,vol. 116, pp. 719- 738 ,(2004) , 10.1023/B:JOSS.0000037227.24460.E5
Igor B. Frenkel, Mikhail G. Khovanov, Canonical bases in tensor products and graphical calculus for Uq(2) Duke Mathematical Journal. ,vol. 87, pp. 409- 480 ,(1997) , 10.1215/S0012-7094-97-08715-9
Helmut Wielandt, Unzerlegbare, nicht negative Matrizen Mathematische Zeitschrift. ,vol. 52, pp. 642- 648 ,(1950) , 10.1007/BF02230720
Persi Diaconis, Mehrdad Shahshahani, Generating a random permutation with random transpositions Probability Theory and Related Fields. ,vol. 57, pp. 159- 179 ,(1981) , 10.1007/BF00535487
Elliott H. Lieb, Two Theorems on the Hubbard Model Physical Review Letters. ,vol. 62, pp. 1201- 1204 ,(1989) , 10.1103/PHYSREVLETT.62.1201
Bruno Nachtergaele, Shannon Starr, Ferromagnetic Lieb-Mattis Theorem Physical Review Letters. ,vol. 94, pp. 057206- 057206 ,(2005) , 10.1103/PHYSREVLETT.94.057206
Elliott Lieb, Daniel Mattis, Ordering Energy Levels of Interacting Spin Systems Journal of Mathematical Physics. ,vol. 3, pp. 749- 751 ,(1962) , 10.1063/1.1724276